Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Agric Food Chem ; 61(50): 12200-10, 2013 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-24224795

RESUMEN

Water-soluble humic substances (denoted by LN) extracted at alkaline pH from leonardite are proposed to be used as complexing agents to overcome micronutrient deficiencies in plants such as iron chlorosis. LN presents oxidized functional groups that can bind Fe(2+) and Fe(3+). The knowledge of the environment of Fe in the Fe-LN complexes is a key point in the studies on their efficacy as Fe fertilizers. The aim of this work was to study the Fe(2+)/Fe(3+) species formed in Fe-LN complexes with (57)Fe Mössbauer spectroscopy under different experimental conditions in relation to the Fe-complexing capacities, chemical characteristics, and efficiency to provide iron in hydroponics. A high oxidation rate of Fe(2+) to Fe(3+) was found when samples were prepared with Fe(2+), although no well-crystalline magnetically ordered ferric oxide formation could be observed in slightly acidic or neutral media. It seems to be the case that the formation of Fe(3+)-LN compounds is favored over Fe(2+)-LN compounds, although at acidic pH no complex formation between Fe(3+) and LN occurred. The Fe(2+)/Fe(3+) speciation provided by the Mössbauer data showed that Fe(2+)-LN could be efficient in hydroponics while Fe(3+)-LN is suggested to be used more effectively under calcareous soil conditions. However, according to the biological assay, Fe(3+)-LN proved to be effective as a chlorosis corrector applied to iron-deficient cucumber in nutrient solution.


Asunto(s)
Fertilizantes/análisis , Sustancias Húmicas/análisis , Quelantes del Hierro/química , Hierro/química , Minerales/química , Cucumis sativus/crecimiento & desarrollo , Cucumis sativus/metabolismo , Hierro/metabolismo , Cinética , Oxidación-Reducción , Suelo/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA