Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Prep Biochem Biotechnol ; 54(1): 1-11, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37071540

RESUMEN

This study describes the production, characterization and application of an endoglucanase from Penicillium roqueforti using lignocellulosic agro-industrial wastes as the substrate during solid-state fermentation. The endoglucanase was generated after culturing with different agro-industrial wastes for 96 h without any pretreatment. The highest activity was obtained at 50 °C and pH 4.0. Additionally, the enzyme showed stability in the temperature and pH ranges of 40-80 °C and 4.0-5.0, respectively. The addition of Ca2+, Zn2+, Mg2+, and Cu2+ increased enzymatic activity. Halotolerance as a characteristic of the enzyme was confirmed when its activity increased by 35% on addition of 2 M NaCl. The endoglucanase saccharified sugarcane bagasse, coconut shell, wheat bran, cocoa fruit shell, and cocoa seed husk. The Box-Behnken design was employed to optimize fermentable sugar production by evaluating the following parameters: time, substrate, and enzyme concentration. Under ideal conditions, 253.19 mg/g of fermentable sugars were obtained following the saccharification of wheat bran, which is 41.5 times higher than that obtained without optimizing. This study presents a thermostable, halotolerant endoglucanase that is resistant to metal ions and organic solvents with the potential to be applied in producing fermentable sugars for manufacturing biofuels from agro-industrial wastes.


Asunto(s)
Celulasa , Saccharum , Celulasa/química , Celulosa , Fibras de la Dieta , Fermentación , Residuos Industriales , Proyectos de Investigación , Saccharum/metabolismo , Azúcares , Calcio/química , Cobre/química , Zinc/química , Magnesio/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA