RESUMEN
It is well known that the use of continuous reinforcing fibers can largely improve the typical low in-plane mechanical properties of 3D-printed parts. However, there is very limited research on the characterization of the interlaminar fracture toughness of 3D-printed composites. In this study, we investigated the feasibility of determining the mode I interlaminar fracture toughness of 3D-printed cFRP composites with multidirectional interfaces. First, elastic calculations and different FE simulations of Double Cantilever Beam (DCB) specimens (using cohesive elements for the delamination, in addition to an intralaminar ply failure criterion) were carried out to choose the best interface orientations and laminate configurations. The objective was to ensure a smooth and stable propagation of the interlaminar crack, while preventing asymmetrical delamination growth and plane migration, also known as crack jumping. Then, the best three specimen configurations were manufactured and tested experimentally to validate the simulation methodology. The experimental results confirmed that, with the appropriate stacking sequence for the specimen arms, it is possible to characterize the interlaminar fracture toughness in multidirectional 3D-printed composites under mode I. The experimental results also show that both initiation and propagation values of the mode I fracture toughness depend on the interface angles, although a clear tendency could not be established.
RESUMEN
In this paper, the one-dimensional tensile behavior of Guadua angustifolia Kunth fibre/polypropylene (PP+GAKS) composites is modeled. The classical model of Kelly-Tyson and its Bowyer-Bader's solution is not able to reproduce the entire stress-strain curve of the composite. An integral (In-Built) micromechanical model proposed by Isitman and Aykol, initially for synthetic fiber-reinforced composites, was applied to predict micromechanical parameters in short natural fiber composites. The proposed method integrates both the information of the experimental stress-strain curves and the morphology of the fiber bundles within the composite to estimate the interfacial shear strength (IFSS), fiber orientation efficiency factor ηFOD, fiber length efficiency factor ηFLD and critical fiber length lc. It was possible to reproduce the stress-strain curves of the PP+GAKS composite with low residual standard deviation. A methodology was applied using X-ray microtomography and digital image processing techniques for the precise extraction of the micromechanical parameters involved in the model. The results showed good agreement with the experimental data.
RESUMEN
The use of continuous fiber as reinforcement in polymer additive manufacturing technologies enhances the mechanical performance of the manufactured parts. This is the case of the Carbon-Fiber reinforced PolyAmide (CF/PA) used by the MarkForged MarkTwo® 3D printer. However, the information available on the mechanical properties of this material is limited and with large variability. In this work, the in-plane mechanical properties and the interlaminar fracture toughness in modes I and II of Markforged's CF/PA are experimentally investigated. Two different standard specimens and end-tabs are considered for the in-plane properties. Monolithic CF/PA specimens without any additional reinforcement are used for the interlaminar fracture toughness characterization. Two different mode I specimen configurations are compared, and two different test types are considered for mode II. The results show that prismatic specimens with paper end-tabs are more appropriate for the characterization of the in-plane material properties. The use of thick specimens for mode I fracture toughness tests complicates the characterization and can lead to erroneous results. Contrary to what has been reported in the literature for the same material, fracture toughness in mode I is lower than for mode II, which agrees with the normal tendency of traditional composite materials.