RESUMEN
Epilepsy is a neurological disease with no defined cause, characterized by recurrent epileptic seizures. These occur due to the dysregulation of excitatory and inhibitory neurotransmitters in the central nervous system (CNS). Psychopharmaceuticals have undesirable side effects; many patients require more than one pharmacotherapy to control crises. With this in mind, this work emphasizes the discovery of new substances from natural products that can combat epileptic seizures. Using in silico techniques, this review aims to evaluate the antiepileptic and multi-target activity of phenylpropanoid derivatives. Initially, ligand-based virtual screening models (LBVS) were performed with 468 phenylpropanoid compounds to predict biological activities. The LBVS were developed for the targets alpha- amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA), voltage-gated calcium channel Ttype (CaV), gamma-aminobutyric acid A (GABAA), gamma-aminobutyric acid transporter type 1 (GAT-1), voltage-gated potassium channel of the Q family (KCNQ), voltage-gated sodium channel (NaV), and N-methyl D-aspartate (NMDA). The compounds that had good results in the LBVS were analyzed for the absorption, distribution, metabolism, excretion, and toxicity (ADMET) parameters, and later, the best molecules were evaluated in the molecular docking consensus. The TR430 compound showed the best results in pharmacokinetic parameters; its oral absorption was 99.03%, it did not violate any Lipinski rule, it showed good bioavailability, and no cytotoxicity was observed either from the molecule or from the metabolites in the evaluated parameters. TR430 was able to bind with GABAA (activation) and AMPA (inhibition) targets and demonstrated good binding energy and significant interactions with both targets. The studied compound showed to be a promising molecule with a possible multi-target activity in both fundamental pharmacological targets for the treatment of epilepsy.
Asunto(s)
Anticonvulsivantes , Epilepsia , Humanos , Epilepsia/tratamiento farmacológico , Animales , Anticonvulsivantes/farmacología , Anticonvulsivantes/uso terapéutico , Anticonvulsivantes/química , Simulación del Acoplamiento MolecularRESUMEN
INTRODUCTION: Brain tumors have high morbidity and mortality rates, accounting for 1.4% of all cancers. Gliomas are the most common primary brain tumors in adults. Currently, several therapeutic approaches are used; however, they are associated with side effects that affect patients'quality of life. Therefore, further studies are needed to develop novel therapeutic protocols with a more favorable side effect profile. In this context, cannabinoid compounds may serve as potential alternatives. OBJECTIVE: This study aimed to review the key enzymatic targets involved in glioma pathophysiology and evaluate the potential interaction of these targets with four cannabinoid derivatives through molecular docking simulations. METHODS: Molecular docking simulations were performed using four cannabinoid compounds and six molecular targets associated with glioma pathophysiology. RESULTS: Encouraging interactions between the selected enzymes and glioma-related targets were observed, suggesting their potential activity through these pathways. In particular, cannabigerol showed promising interactions with epidermal growth factor receptors and phosphatidylinositol 3- kinase, while Δ-9-tetrahydrocannabinol showed remarkable interactions with telomerase reverse transcriptase. CONCLUSION: The evaluated compounds exhibited favorable interactions with the analyzed enzymatic targets, thus representing potential candidates for further in vitro and in vivo studies.
Asunto(s)
Neoplasias Encefálicas , Cannabinoides , Glioma , Adulto , Humanos , Simulación del Acoplamiento Molecular , Calidad de Vida , Cannabinoides/farmacología , Cannabinoides/uso terapéutico , Glioma/tratamiento farmacológico , Glioma/metabolismo , Glioma/patología , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/metabolismoRESUMEN
BACKGROUND: Skin aging is a natural process resulting from intrinsic (hormonal and genetic) and extrinsic (environmental) factors. Photoaging occurs due to prolonged exposure of the skin to ultraviolet radiation, accounting for 80% of facial aging. INTRODUCTION: Characteristics of aging skin include reduced elasticity, the appearance of fine wrinkles, uneven tone, and dryness. Clinical signs of photoaging involve the presence of deeper wrinkles, rough texture, dyschromia and a greater loss of elasticity compared to chronological aging. METHODS: This work reported several scientific articles that used computational techniques, such as molecular docking, molecular dynamics and quantitative structure-activity relationship (QSAR) to identify natural products and their derivatives against skin aging and photoaging. RESULTS: The in silico analyses carried out by the researchers predicted the binding affinity and interactions of the natural products with the targets matrix metalloproteinase-1, matrix metalloproteinase- 3, matrix metalloproteinase-9 and tyrosinase. Furthermore, some studies have reported the stability of the protein-ligand complex and the physicochemical properties of the studied compounds. Finally, this research proposes promising molecules against the targets. CONCLUSION: Thus, studies like this one are relevant to guide new research related to skin aging and photoaging.
Asunto(s)
Envejecimiento de la Piel , Humanos , Rayos Ultravioleta/efectos adversos , Simulación del Acoplamiento Molecular , Piel/metabolismo , EnvejecimientoRESUMEN
BACKGROUND: Neurological disorders are composed of several diseases that affect the central and peripheral nervous system; among these are neurodegenerative diseases, which lead to neuronal death. Many of these diseases have treatment for the disease and symptoms, leading patients to use several drugs that cause side effects. INTRODUCTION: The search for new treatments has led to the investigation of multi-target drugs. METHODS: This review aimed to investigate in the literature the multi-target effect in neurological disorders through an in silico approach. Studies were reviewed on the diseases such as epilepsy, Alzheimer's disease, Amyotrophic Lateral Sclerosis (ALS), Huntington's disease, cerebral ischemia, and Parkinson's disease. RESULTS: As a result, the study emphasize the relevance of research by computational techniques such as quantitative structure-activity relationship (QSAR) prediction models, pharmacokinetic prediction models, molecular docking, and molecular dynamics, besides presenting possible drug candidates with multi-target activity. CONCLUSION: It was possible to identify several targets with pharmacological activities. Some of these targets had diseases in common such as carbonic anhydrase, acetylcholinesterase, NMDA, and MAO being relevant for possible multi-target approaches.
Asunto(s)
Enfermedad de Alzheimer , Enfermedades Neurodegenerativas , Humanos , Enfermedades Neurodegenerativas/tratamiento farmacológico , Simulación del Acoplamiento Molecular , Polifarmacología , Acetilcolinesterasa , Enfermedad de Alzheimer/tratamiento farmacológicoRESUMEN
BACKGROUND: Epilepsy is a neurological disease affected by an imbalance of inhibitory and excitatory signaling in the brain. INTRODUCTION: In this disease, the targets are active in pathophysiology and thus can be used as a focus for pharmacological treatment. METHODS: Several studies demonstrated the antiepileptic effect of drugs acting on the following targets: N-methyl-D-aspartate (NMDA), alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor, voltage-gated calcium channel (Cav), Gamma aminobutyric acid transporter type 1 (GAT1), voltage-gated sodium channels (Nav), voltage-gated potassium channel of the Q subfamily (KCNQ) and Gamma aminobutyric acid type A (GABAA) receiver. RESULTS: These studies highlight the importance of molecular docking. CONCLUSION: Quantitative Structure-Activity Relationship (QSAR) and computer aided drug design (CADD) in predicting of possible pharmacological activities of these targets.
Asunto(s)
Epilepsia , Humanos , Simulación del Acoplamiento Molecular , Epilepsia/tratamiento farmacológico , Receptores AMPA/fisiología , Anticonvulsivantes/farmacología , Anticonvulsivantes/uso terapéutico , Ácido gamma-Aminobutírico/uso terapéuticoRESUMEN
Epilepsy is a chronic neurological disorder affecting 1-2% of world population, and one-third of patients are refractory to pharmacological treatment. This fact has stimulated research for new antiepileptic drugs and natural products have been an important source. trans-Anethole (TAN) is a phenylpropanoid, component of some essential oils, extracted from plants, and its effects have been little studied. Therefore, this study is aimed at investigating the TAN effect in classic seizure models and evaluate the electroencephalographic (EEG) profile of animals treated with this substance. For this, Swiss male mice (Mus musculus) were used, and the lethal dose was evaluated and subsequently submitted to the test maximal electroshock (MES), the pentylenetetrazole- (PTZ) induced seizure test, and the EEG profile. Initially, the LD50 for TAN was estimated in 1000 mg/kg (i.p.) dose and there was no sign of acute toxicity or death. In the MES test, TAN 300, i.p. (12.00 ± 2.9 s) and 400 mg/kg, i.p. (9.00 ± 4.4 s) doses was able to decrease tonic seizures duration induced by electric discharge (0.5 mA, 150 pulses/s, for 0.5 s). In the PTZ test (75 mg/kg, i.p.), TAN 400 mg/kg, i.p. increased the latency to myoclonic jerks (80.0 (56.0-134.0)), the latency totonic-clonic seizures (900.0 (861.0-900.0) and decrease seizure duration (0.0 (0.0-10.0)). No deaths were found in this groups compared to vehicle. EEG analysis showed an amplitude decrease of waves (ratio of baseline) in TAN 300 (1.82 ± 0.23) and 400 mg/kg (1.06 ± 0.16) groups. In this way, TAN at 400 mg/kg was able to inhibit and/or attenuate seizures by increasing the time for the onset of spasms and convulsions, as reducing the duration of seizures. The EEG profile corroborate with this results showing a reduction in the amplitude of waves compared to the PTZ group. Thus, TAN showed an anticonvulsant effect in all experimental models performed, behavioral and electroencephalographic.