Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Phys Eng Sci Med ; 44(2): 457-471, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33844156

RESUMEN

The fabrication of brachytherapy surface moulds is considered laborious and time consuming that often result in repeated attempts due to incorrect catheter positioning or the presence of air gaps. 3-dimensional printing using low-cost and reliable materials has allowed the rapid creation of patient-specific surface mould applicators to be achieved using patient imaging data obtained via CT scan. In this study we investigate whether an alternative approach using photogrammetry techniques can improve this process and how camera settings and object texture affect the reconstructions. Two humanoid phantoms, an anthropomorphic RANDO phantom and a Laerdal Little Anne CPR training manikin were used in this study. Both were imaged using a Nikon D5600 DSLR and Nokia 3.1 smartphone camera and reconstructed using Agisoft Metashape software. CT scans of both phantoms were taken as references for comparing the photogrammetry reconstructions. Models were reconstructed from different photo sets and assessed by distance to agreement with the CT models. Both phantoms were effectively reconstructed for most experiments. Increasing the number of photos used produced the better reconstructions while in general, reconstructions using video data were poor. The two phantoms were reconstructed at a similar quality. Background light that caused undesirable reflections significantly reduced reconstruction quality. Applying a non-reflective tape to the affected regions provided a suitable method for reducing their effects. Photogrammetry techniques were effectively able to reconstruct 3-dimensional models of both phantom. The camera settings and lighting did have a profound effect on the reconstruction quality and should be chosen appropriately depending on the scene.


Asunto(s)
Braquiterapia , Humanos , Fantasmas de Imagen , Fotogrametría , Impresión Tridimensional , Tomografía Computarizada por Rayos X
2.
Med Phys ; 47(2): 393-403, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31778235

RESUMEN

PURPOSE: Protons and heavy ions are considered to be ideal particles for use in external beam radiotherapy due to the superior properties of the dose distribution. While a photon (x-ray) beam delivers considerable dose to healthy tissues around the tumor, a proton beam that is delivered with sufficient energies has: a low entrance dose (the dose in front of the tumor); a high-dose region within the tumor, known as the Bragg peak; and, no exit dose beyond the tumor. Proton therapy is the next major step in advancing radiotherapy treatment. The purpose of this project was to adapt an existing radioisotope production cyclotron, a General Electric (GE) PETtrace, to enable radiobiological studies using proton beams. During routine use the PETtrace delivers 16.5 MeV protons to target with beam currents in the range of 10-100 µA resulting in dose rates in the order of kGy/s. To achieve the aim of the project the dose rate had to be reduced to the Gy/min range, without attenuating the proton energy below 5 MeV. This paper covers the design, construction and validation of the beam port. METHODS: Monte Carlo simulations were performed, using GEANT4, SRIM and PACE4 to design the beam port and optimize its components. Once the beam port was fabricated, validation experiments were performed using EBT3 and HD-V2 Gafchromic™ films, and a Keithley 6485 picoampere meter. RESULTS AND CONCLUSION: The external beam port was successfully modeled, designed and fabricated. By using a 0.25 mm thick gold foil and a brass pin-hole collimator the beam was spread from a narrow full beam diameter of 10 mm to a wide beam with a 5% flatness area in the center of the beam that had a diameter of ~20 mm. In using this system the dose rate was reduced from kGy/s to ~30 Gy/min.


Asunto(s)
Neoplasias/radioterapia , Terapia de Protones/instrumentación , Terapia de Protones/métodos , Simulación por Computador , Ciclotrones , Relación Dosis-Respuesta en la Radiación , Electricidad , Diseño de Equipo , Humanos , Método de Montecarlo , Protones , Radiobiología , Reproducibilidad de los Resultados
3.
Phys Med ; 65: 167-171, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31494370

RESUMEN

The purpose of this study was to investigate the potential of real-time optically stimulated luminescence (rtOSL) measurements of a beryllium oxide (BeO) ceramic fibre-coupled luminescence dosimetry system. By pulsing the stimulation laser during the exposure to ionizing radiation, an rtOSL dose-rate measurement can be obtained which could be stem effect free. A portable rtOSL BeO ceramic fibre-coupled dosimetry system is presented and characterized using a constant dose-rate superficial 140 kVp X-ray beam. The rtOSL was measured for dose-rates between 0.29 and 3.88 Gy/min, controlled by varying the source to surface distance. After correcting for OSL decay during the exposure, a linear dose-rate response of the change in rtOSL (ΔrtOSL) was observed. The ΔrtOSL was also observed to be stem effect free.


Asunto(s)
Berilio , Dosimetría con Luminiscencia Ópticamente Estimulada , Dosis de Radiación , Factores de Tiempo , Rayos X
4.
Australas Phys Eng Sci Med ; 42(3): 863-869, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31396857

RESUMEN

Respiratory gated treatments are now common in order to reduce tumour motion uncertainties due to breathing. One issue associated with gated treatments is the time delay between the gating system and the linear accelerator. In this study we develop and characterise an affordable phantom to be used in routine and patient specific quality assurance (QA) of the Varian Real-Time Position Management™ (RPM) system. A photodiode has been incorporated into the phantom in order to estimate the time delay. A commercial Quasar phantom was customised to incorporate two stepper motors which independently control an anterior-posterior abdomen/thorax moving plate, and an inferior-superior moving lung insert. A photodiode placed in the path of the radiation is used to measure when beam on/off occurs. Two Arduino microcontroller boards have been utilised to control the motors, read the photodiode and write to an SD card. The measured beam on/off, correlated to the known positions of the phantom is compared to the gate window for RPM. The time delay was measured for sinusoidal movements with a period of 7.50 s and 3.75 s, and for three patient breathing traces. For the sinusoidal movements, time delays of 150 ± 34 ms and 39 ± 34 ms were measured, for 7.50 s and 3.75 s periods, respectively. In the case of the patients' breathing traces time delays of 135 ± 26 ms, 137 ± 34 ms and 129 ± 28 ms were measured. An affordable motion phantom has been developed for routine and patient specific QA of respiratory gating systems. It is capable of reproducing a patient's breathing waveform and performing time delay measurements with a photodiode. Results indicate a time delay of the order of 0.1-0.2 s for the RPM system.


Asunto(s)
Aceleradores de Partículas , Fantasmas de Imagen , Respiración , Algoritmos , Humanos , Movimiento , Programas Informáticos , Factores de Tiempo
5.
Med Phys ; 42(11): 6349-56, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26520726

RESUMEN

PURPOSE: The authors evaluate the capability of a beryllium oxide (BeO) ceramic fiber-coupled luminescence dosimeter, named radioluminescence/optically stimulated luminescence (RL/OSL) BeO FOD, for dosimetric verification of high dose rate (HDR) treatments. The RL/OSL BeO FOD is capable of RL and OSL measurements. METHODS: The RL/OSL BeO FOD is able to be inserted in 6F proguide needles, used in interstitial HDR treatments. Using a custom built Perspex phantom, 6F proguide needles could be submerged in a water tank at 1 cm separations from each other. A second background fiber was required to correct for the stem effect. The stem effect, dose linearity, reproducibility, depth-dose curves, and angular and temperature dependency of the RL/OSL BeO FOD were characterised using an Ir-192 source. The RL/OSL BeO FOD was also applied to the commissioning of a 10 mm horizontal Leipzig applicator. RESULTS: Both the RL and OSL were found to be reproducible and their percentage depth-dose curves to be in good agreement with those predicted via TG-43. A combined uncertainty of 7.9% and 10.1% (k=1) was estimated for the RL and OSL, respectively. For the 10 mm horizontal Leipzig applicator, measured percentage depth doses were within 5% agreement of the published reference calculations. The output at the 3 mm prescription depth for a 1 Gy delivery was verified to be 0.99±0.08 Gy and 1.01±0.10 Gy by the RL and OSL, respectively. CONCLUSIONS: The use of the second background fiber under the current setup means that the two fibers cannot fit into a single 6F needle. Hence, use of the RL is currently not adequate for the purpose of in vivo brachytherapy dosimetry. While not real-time, the OSL is shown to be adequate for in vivo brachytherapy dosimetry.


Asunto(s)
Berilio/efectos de la radiación , Braquiterapia/instrumentación , Cerámica/efectos de la radiación , Fraccionamiento de la Dosis de Radiación , Tecnología de Fibra Óptica/instrumentación , Dosimetría Termoluminiscente/instrumentación , Berilio/química , Cerámica/química , Sistemas de Computación , Diseño de Equipo , Análisis de Falla de Equipo , Mediciones Luminiscentes/instrumentación , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA