Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros











Intervalo de año de publicación
1.
Pharmaceuticals (Basel) ; 17(5)2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38794203

RESUMEN

Drug-resistant bacteria constitute a big barrier against current pharmacotherapy. Efforts are urgent to discover antibacterial drugs with novel chemical and biological features. Our work aimed at the synthesis, evaluation of antibacterial effects, and toxicity of licochalcone C (LCC), a naturally occurring chalcone. The synthetic route included six steps, affording a 10% overall yield. LCC showed effects against Gram-positive bacteria (MIC = 6.2-50.0 µg/mL), Mycobacterium species (MIC = 36.2-125 µg/mL), and Helicobacter pylori (MIC = 25 µg/mL). LCC inhibited the biofilm formation of MSSA and MRSA, demonstrating MBIC50 values of 6.25 µg/mL for both strains. The investigations by fluorescence microscopy, using PI and SYTO9 as fluorophores, indicated that LCC was able to disrupt the S. aureus membrane, similarly to nisin. Systemic toxicity assays using Galleria mellonella larvae showed that LCC was not lethal at 100 µg/mL after 80 h treatment. These data suggest new uses for LCC as a compound with potential applications in antibacterial drug discovery and medical device coating.

2.
Sci Rep ; 14(1): 11132, 2024 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-38750088

RESUMEN

Candida species have been responsible for a high number of invasive infections worldwide. In this sense, Rottlerin has demonstrated a wide range of pharmacological activities. Therefore, this study aimed to evaluate the antifungal, antibiofilm and antivirulence activity of Rottlerin in vitro against Candida spp. and its toxicity and antifungal activity in vivo. Rottlerin showed antifungal activity against all yeasts evaluated, presenting Minimum Inhibitory and Fungicidal Concentration (MIC and MFC) values of 7.81 to > 1000 µg/mL. Futhermore, it was able to significantly inhibit biofilm production, presenting Biofilm Inhibitory Concentration (MICB50) values that ranged from 15.62 to 250 µg/mL and inhibition of the cell viability of the biofilm by 50% (IC50) from 2.24 to 12.76 µg/mL. There was a considerable reduction in all hydrolytic enzymes evaluated, with emphasis on hemolysin where Rottlerin showed a reduction of up to 20%. In the scanning electron microscopy (SEM) analysis, Rottlerin was able to completely inhibit filamentation by C. albicans. Regarding in vivo tests, Rottlerin did not demonstrate toxicity at the therapeutic concentrations demonstrated here and was able to increase the survival of C. elegans larvae infected. The results herein presented are innovative and pioneering in terms of Rottlerin's multipotentiality against these fungal infections.


Asunto(s)
Acetofenonas , Antifúngicos , Benzopiranos , Biopelículas , Pruebas de Sensibilidad Microbiana , Biopelículas/efectos de los fármacos , Antifúngicos/farmacología , Benzopiranos/farmacología , Animales , Acetofenonas/farmacología , Caenorhabditis elegans/efectos de los fármacos , Candida/efectos de los fármacos , Candidiasis/tratamiento farmacológico , Candida albicans/efectos de los fármacos
3.
Metabolomics ; 19(8): 68, 2023 07 24.
Artículo en Inglés | MEDLINE | ID: mdl-37486581

RESUMEN

INTRODUCTION: Lantana trifolia L. (Verbenaceae) is a shrubby plant. In folk medicine, its leaves are used in the form of infusions and syrups to treat angina, coughs, and colds; they are also applied as tranquilizer. Previous studies have reported the antimicrobial potential of the compounds present in L. trifolia leaves. OBJECTIVES: To report the anti-Candida activities of the fractions obtained from the fruits and leaves of two L. trifolia specimens. METHODS: The L. trifolia fractions were submitted to UFLC-DAD-(+)-ESI-MS/MS, and the data were analyzed by using multivariate statistical tools (PCA, PLS-DA) and spectral similarity analyses based on molecular networking, which aided dereplication of the bioactive compounds. Additionally, NMR analyses were performed to confirm the chemical structure of some of the major compounds in the fractions. RESULTS: The ethyl acetate fractions presented MIC values lower than 100 µg mL-1 against the three Candida strains evaluated herein (C. albicans, C. tropicalis, and C. glabrata). Fractions FrPo AcOEt, FrPe AcOEt, and FrPe nBut had MIC values of 1.46, 2.93, and 2.93 µg mL-1 against C. glabrata, respectively. These values resembled the MIC value of amphotericin B, the positive control (0.5-1.0 µg mL-1), against this same strain. Cytotoxicity was measured and used to calculate the selectivity index. CONCLUSION: On the basis of our data, the most active fractions in the antifungal assay were more selective against C. glabrata than against non-infected cells. The analytical approach adopted here allowed us to annotate 29 compounds, nine of which were bioactive (PLS-DA results) and belong to the class of phenolic compounds.


Asunto(s)
Antineoplásicos , Lantana , Antifúngicos/farmacología , Antifúngicos/análisis , Espectrometría de Masas en Tándem , Lantana/química , Frutas , Extractos Vegetales/farmacología , Extractos Vegetales/química , Metabolómica , Hojas de la Planta/química
4.
Sci Rep ; 12(1): 21165, 2022 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-36477635

RESUMEN

Bacterial and viral infections are serious public health issue. Therefore, this study aimed to evaluate the antibacterial, antibiofilm and antiviral potential of the Brazilian Red Propolis (BRP) crude hydroalcoholic extract, fractions, and isolated compounds, as well as their in vivo toxicity. The antibacterial activity was evaluated by determining the Minimum Inhibitory Concentration and the antibiofilm activity by determining the Minimum Inhibitory Concentration of Biofilm (MICB50). The viable bacteria count (Log10 UFC/mL) was also obtained. The antiviral assays were performed by infecting BHK-21 cells with Chikungunya (CHIKV) nanoluc. The toxicity of the BRP was evaluated in the Caenorhabditis elegans animal model. The MIC values for the crude hydroalcoholic extract sample ranged from 3.12 to 100 µg/mL, while fractions and isolated compounds the MIC values ranged from 1.56 to 400 µg/mL.The BRP crude hydroalcoholic extract, oblongifolin B, and gutiferone E presented MICB50 values ranging from 1.56 to 100 µg/mL against monospecies and multispecies biofilms. Neovestitol and vestitol inhibited CHIKV infection by 93.5 and 96.7%, respectively. The tests to evaluate toxicity in C. elegans demonstrated that the BRP was not toxic below the concentrations 750 µg/mL. The results constitute an alternative approach for treating various infectious diseases.


Asunto(s)
Própolis , Animales , Própolis/farmacología , Caenorhabditis elegans , Brasil , Extractos Vegetales/farmacología
5.
Arch Oral Biol ; 143: 105520, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36049430

RESUMEN

OBJECTIVE: This study aimed to evaluate the antibacterial activity of crude Brazilian red propolis (BRP) extract against anaerobic bacteria involved in primary endodontic infection. Additionally, we evaluate the cell viability and free radical production of human dental pulp fibroblasts (HDPF) in direct contact with mineral trioxide aggregate (MTA) and BRP. DESIGN: The Minimum Inhibitory Concentration, Minimum Bactericidal Concentration (MIC, MBC) and Minimum Inhibitory Concentration of Biofilm (MICB50) of BRP against anaerobic endodontic pathogens were determined. HDPF were exposed to BRP10 (10 µg/mL), BRP50 (50 µg/mL), MTA extract (1:1, 1:2, 1:4 e 1:8), dimethyl sulfoxide 0.5% (DMSO), and cell culture medium (DMEM). The groups were tested for cell viability (MTT assay), and free radical production (reactive oxygen species - ROS, DCFH-DA probe and nitric oxide - NO, Griess reagent). The one-way ANOVA and Tukey's tests were employed at a significance level of 5%. RESULTS: MIC/MBC values of BRP performed antibacterial activity for Parvimonas micra (6.25/6.25 µg/mL), Fusobacterium nucleatum (25/25 µg/mL), Prevotella melaninogenica (50/100 µg/mL), Prevotella nigrescens (50/100 µg/mL), Prevotella intermedia (50/100 µg/mL), and Porphyromonas gingivalis (50/200 µg/mL). The MICB50 values ranged from 1.56 to 50 µg/mL. BRP and MTA stimulated cell viability, emphasizing BRP10 (p = 0.007). Furthermore, it was observed that MTA 1:1, MTA 1:2, and BRP50 slightly increased ROS (p < 0.001) and NO production (p = 0.008, p = 0.007, and p < 0.001 respectively) compared to DMEM group. CONCLUSIONS: BRP exhibits good antibacterial activity against endodontic pathogens, and both BRP and MTA promote the viability of HDPF without increasing NO and ROS production.


Asunto(s)
Própolis , Humanos , Antibacterianos/farmacología , Brasil , Dimetilsulfóxido , Pruebas de Sensibilidad Microbiana , Óxido Nítrico , Extractos Vegetales/farmacología , Própolis/farmacología , Especies Reactivas de Oxígeno
6.
Arch Oral Biol ; 143: 105546, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36162339

RESUMEN

OBJECTIVE: This study aimed (i) to evaluate the antibacterial and cytotoxic activities of the crude extract and fractions obtained from Euclea natalensis A.D.C. roots against bacteria that cause periodontal disease and caries and (ii) to identify the isolated compounds. DESIGN: The minimum inhibitory concentration (MIC) and the minimum bactericidal concentration (MBC) of the extract and fractions were determined by the microplate dilution assay. The cytotoxicity of the extract and fractions was evaluated by using the XTT colorimetric assay and normal human fibroblast cells (GM07492A, lung fibroblasts). The compounds present in the most promising fraction were determined by qualitative analysis through liquid chromatography coupled to mass spectrometry (HPLC-MS-ESI). RESULTS: The MIC results ranged from 25 to > 400 µg/mL for the extract and from 1.56 to > 400 µg/mL for the fractions. To evaluate cytotoxicity, the tested concentrations of the extract and fractions ranged from 19.5 to 2500 µg/mL; IC50 values between 625 and 1250 µg/mL were obtained. Analysis of the main bioactive fraction by HPLC-MS-ESI identified phenolic acids, coumarins, naphthoquinones, lignans, and fatty acids. CONCLUSIONS: The E. natalensis root extract and fractions displayed good antibacterial activity against periodontal pathogenic and cariogenic bacteria. The antibacterial activity may be due to compounds present in the extract and fractions, which also showed low cytotoxicity to normal human cells. These data are relevant and encourage further research into this plant species, which may contribute to the discovery of new herbal medicines that will help to mitigate the problems caused by oral pathogenic bacteria.


Asunto(s)
Ebenaceae , Lignanos , Naftoquinonas , Antibacterianos/química , Bacterias , Cumarinas , Ácidos Grasos , Humanos , Pruebas de Sensibilidad Microbiana , Naftoquinonas/farmacología , Extractos Vegetales/química
7.
Anaerobe ; 76: 102588, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35618163

RESUMEN

OBJECTIVES: Periodontitis is a pathology resulting from complex interaction of microorganisms in the dental biofilm with the host's immune system. Increased use of antibiotics associated with their inappropriate use has increased resistance levels in anaerobic bacteria. Therefore, identifying new antimicrobial compounds, such as chalcones, is urgent. This study evaluates the antibacterial activity and the antibiofilm activity of 15 chalcones against the periodontopathogenic bacteria Prevotella nigrescens (ATCC 33563), P. oralis (ATCC 33269), Peptostreptococcus anaerobius (ATCC 27337), Actinomyces viscosus (ATCC 43146), Porphyromonas asaccharolytica (ATCC 25260), and Fusobacterium nucleatum (ATCC 25586). METHODS: The compounds were evaluated by minimum inhibitory concentration (MIC) and minimum biofilm inhibitory concentration (MBIC) tests. RESULTS: Compounds 1-6 showed good antibacterial and antibiofilm activities against most of the evaluated bacteria: MIC was lower than or equal to 6.25 µg/mL, biofilm biomass was reduced by 95%, and the compounds at concentrations between 0.78 and 100 µg/mL totally inhibited cell viability. Among the tested chalcones, 3 stood out: it was effective against all the bacteria, as revealed by the MIC and MBIC results. CONCLUSIONS: Our results have consolidated a base for the development of new studies on the effects of the tested chalcones as agents to combat and to prevent periodontitis.


Asunto(s)
Chalconas , Periodontitis , Antibacterianos/farmacología , Bacterias , Biopelículas , Chalconas/farmacología , Humanos , Pruebas de Sensibilidad Microbiana
8.
Biomed Pharmacother ; 129: 110467, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32603890

RESUMEN

The microorganisms that constitute the oral microbiome can cause oral diseases, including dental caries and endodontic infections. The use of natural products could help to overcome bacterial resistance to the antimicrobials that are currently employed in clinical therapy. This study assessed the antimicrobial activity of the Copaifera pubiflora oleoresin and of the compounds isolated from this resin against oral bacteria. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) assays provided values ranging from 6.25 to > 400 µg/mL for the C. pubiflora oleoresin and its isolated compounds. The fractional inhibitory concentration index (FICI) assay showed that the oleoresin and chlorhexidine did not act synergistically. All the tested bacterial strains formed biofilms. MICB50 determination revealed inhibitory action: values varied from 3.12-25 µg/mL for the oleoresin, and from 0.78 to 25 µg/mL for the ent-hardwickiic acid. Concerning biofilm eradication, the C. pubiflora oleoresin and hardwickiic acid eradicated 99.9 % of some bacterial biofilms. Acid resistance determination showed that S. mutans was resistant to acid in the presence of the oleoresin and ent-hardwickiic acid at pH 4.0, 4.5, and 5.0 at all the tested concentrations. Analysis of DNA/RNA and protein release by the cell membrane demonstrated that the oleoresin and hardwiickic acid damaged the bacterial membrane irreversibly, which affected membrane integrity. Therefore, the C. pubiflora oleoresin and ent-hardwickiic acid have potential antibacterial effect and can be used as new therapeutic alternatives to treat oral diseases such as dental caries and endodontic infections.


Asunto(s)
Antibacterianos/farmacología , Bacterias/efectos de los fármacos , Biopelículas/efectos de los fármacos , Diterpenos/farmacología , Fabaceae , Boca/microbiología , Extractos Vegetales/farmacología , Antibacterianos/aislamiento & purificación , Bacterias/crecimiento & desarrollo , Bacterias/patogenicidad , Biopelículas/crecimiento & desarrollo , Membrana Celular/efectos de los fármacos , Diterpenos/aislamiento & purificación , Fabaceae/química , Pruebas de Sensibilidad Microbiana , Extractos Vegetales/aislamiento & purificación , Virulencia
9.
Braz. J. Pharm. Sci. (Online) ; 56: e18371, 2020. tab
Artículo en Inglés | LILACS | ID: biblio-1132038

RESUMEN

This study aims to investigate chemical composition of essential oils from Murraya paniculata (L.) Jack (Rutaceae) ripe and unripe fruits and determine their in vitro antibacterial activity. Essential oils were extracted by hydrodistillation from Murraya paniculata (L.) Jack ripe and unripe fruits collected in the Cerrado, in Rio Verde, southwestern Goiás, Brazil. They were analyzed by gas chromatography with flame ionization detector (GC-FID) and by gas chromatography-mass spectrometry (GC-MS). Sesquiterpenes, which represent the most abundant class of compounds in oils, predominated in both ripe and unripe fruits. Major constituents of essential oils extracted from ripe fruits (RF-EO) were (-caryophyllene (21.3%), (-ylangene (13.3%), germacrene-D (10.9%) and (-zingiberene (9.7%) whereas the ones of unripe fruits (UF-EO) were sesquithujene (25.0%), (-zingiberene (18.2%), germacrene-D (13.1%) and (-copaene (12.7%). In vitro antibacterial activity of essential oils was evaluated in terms of its minimum inhibitory concentration (MIC) values by the broth microdilution method in 96-well microplates. Both essential oils under investigation showed moderate anti-streptococcal activity against the following bacteria: Streptococcus mutans, S. mitis, S. sanguinis, S. sobrinus and S. salivarius. MIC values ranged between 100 and 400 µg/mL. Regarding the antimycobacterial activity, essential oils from M. paniculata (L.) Jack unripe and ripe fruits were active against Mycobacterium kansasii (MIC = 250 µg/mL), moderately active against M. tuberculosis (MIC = 500 µg/mL) and inactive against M. avium (MIC = 2000 µg/mL). This study was pioneer in revealing similar chemical profiles of both essential oils extracted from Murraya paniculata (L.) Jack unripe and ripe fruits, besides describing their in vitro anti-streptococcal and antimycobacterial activities.


Asunto(s)
Técnicas In Vitro/métodos , Aceites Volátiles/química , Rutaceae/anatomía & histología , Murraya/clasificación , Frutas/anatomía & histología , Streptococcus mutans , Pruebas de Sensibilidad Microbiana , Cromatografía de Gases/instrumentación , Mycobacterium kansasii , Cromatografía de Gases y Espectrometría de Masas/métodos , Mycobacterium/clasificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA