RESUMEN
Musculoskeletal diseases continue to rise on a global scale, causing significant socioeconomic impact and decreased quality of life. The most common disorders affecting musculoskeletal structures are osteoarthritis and tendinopathies, complicated orthopedic conditions responsible for major pain and debilitation. Intra-articular hyaluronic acid (HA) has been a safe, effective, and minimally invasive therapeutic tool for treating these diseases. Several studies from bedside to clinical practice reveal the multiple benefits of HA such as lubrication, anti-inflammation, and stimulation of cellular activity associated with proliferation, differentiation, migration, and secretion of additional molecules. Collectively, these effects have demonstrated positive outcomes that assist in the regeneration of chondral and tendinous tissues which are otherwise destroyed by the predominant catabolic and inflammatory conditions seen in tissue injury. The literature describes the physicochemical, mechanical, and biological properties of HA, their commercial product types, and clinical applications individually, while their interfaces are seldom reported. Our review addresses the frontiers of basic sciences, products, and clinical approaches. It provides physicians with a better understanding of the boundaries between the processes that lead to diseases, the molecular mechanisms that contribute to tissue repair, and the benefits of the HA types for a conscientious choice. In addition, it points out the current needs for the treatments.
RESUMEN
Several musculoskeletal conditions are triggered by inflammatory processes that occur along with imbalances between anabolic and catabolic events. Platelet-rich plasma (PRP) is an autologous product derived from peripheral blood with inherent immunomodulatory and anabolic properties. The clinical efficacy of PRP has been evaluated in several musculoskeletal conditions, including osteoarthritis, tendinopathy, and osteonecrosis. When used in combination with hyaluronic acid (HA), a common treatment alternative, the regenerative properties of PRP are significantly enhanced and may provide additional benefits in terms of clinical outcomes. Recently, a new PRP-derived product has been reported in the literature and is being referred to as "plasma gel". Plasma gels are obtained by polymerizing plasmatic proteins, which form solid thermal aggregates cross-linked with fibrin networks. Plasma gels are considered to be a rich source of growth factors and provide chemotactic, migratory, and proliferative properties. Additionally, clot formation and the associated fibrinolytic reactions play an additional role in tissue repair. There are only a few scientific articles focusing on plasma gels. Historically, they have been utilized in the fields of aesthetics and dentistry. Given that the combination of three products (PRP, HA, and plasma gel) could enhance tissue repair and wound healing, in this technical note, we propose a novel regenerative approach, named "PRP-HA cellular gel matrix" (PRP-GM), in which leukocyte-rich PRP (LR-PRP) is mixed with a plasma gel (obtained by heating the plasma up) and HA in one syringe using a three-way stopcock. The final product contains a fibrin-albumin network entangled with HA's polymers, in which the cells and biomolecules derived from PRP are attached and released gradually as fibrinolytic reactions and hyaluronic acid degradation occur. The presence of leukocytes, especially monocytes and macrophages, promotes tissue regeneration, as type 2 macrophages (M2) possess an anti-inflammatory feature. In addition, HA promotes the viscosuplementation of the joint and induces an anti-inflammatory response, resulting in pain relief. This unique combination of biological molecules may contribute to the optimization of regenerative protocols suitable for the treatment of degenerative musculoskeletal diseases.
RESUMEN
Dorsal root rhizotomy (DRZ) is currently considered an untreatable injury, resulting in the loss of sensitive function and usually leading to neuropathic pain. In this context, we recently proposed a new surgical approach to treat DRZ that uses platelet-rich plasma (PRP) gel to restore the spinal reflex. Success was correlated with the reentry of primary afferents into the spinal cord. Here, aiming to enhance previous results, cell therapy with bioengineered human embryonic stem cells (hESCs) to overexpress fibroblast growth factor 2 (FGF2) was combined with PRP. For these experiments, adult female rats were submitted to a unilateral rhizotomy of the lumbar spinal dorsal roots, which was followed by root repair with PRP gel with or without bioengineered hESCs. One week after DRZ, the spinal cords were processed to evaluate changes in the glial response (GFAP and Iba-1) and excitatory synaptic circuits (VGLUT1) by immunofluorescence. Eight weeks postsurgery, the lumbar intumescences were processed for analysis of the repaired microenvironment by transmission electron microscopy. Spinal reflex recovery was evaluated by the electronic Von Frey method for eight weeks. The transcript levels for human FGF2 were over 37-fold higher in the induced hESCs than in the noninduced and the wildtype counterparts. Altogether, the results indicate that the combination of hESCs with PRP gel promoted substantial and prominent axonal regeneration processes after DRZ. Thus, the repair of dorsal roots, if done appropriately, may be considered an approach to regain sensory-motor function after dorsal root axotomy.
RESUMEN
Autologous leukocyte- and platelet-rich plasma (L-PRP) combined with hyaluronic acid (HA) has been widely used in local applications for cartilage and bone regeneration. The association between L-PRP and HA confers structural and rheological changes that differ among individual biomaterials but has not been investigated. Therefore, the standardization and characterization of L-PRP-HA are important to consider when comparing performance results to improve future clinical applications. To this end, we prepared semi-interpenetrating polymer networks (semi-IPNs) of L-PRP and HA and characterized their polymerization kinetics, morphology, swelling ratio, stability and rheological behavior, which we found to be tunable according to the HA molar mass (MM). Mesenchymal stem cells derived from human adipose tissue (h-AdMSCs) seeded in the semi-IPNs had superior viability and chondrogenesis and osteogenesis capabilities compared to the viability and capabilities of fibrin. We have demonstrated that the preparation of the semi-IPNs under controlled mixing ensured the formation of cell-friendly hydrogels rich in soluble factors and with tunable properties according to the HA MM, rendering them suitable for clinical applications in regenerative medicine.
Asunto(s)
Tejido Adiposo/metabolismo , Fibrina , Ácido Hialurónico , Hidrogeles , Células Madre Mesenquimatosas/metabolismo , Plasma Rico en Plaquetas/química , Medicina Regenerativa , Tejido Adiposo/citología , Células Cultivadas , Femenino , Fibrina/química , Fibrina/farmacología , Humanos , Ácido Hialurónico/química , Ácido Hialurónico/farmacología , Hidrogeles/química , Hidrogeles/farmacología , Masculino , Células Madre Mesenquimatosas/citologíaRESUMEN
Knee osteoarthritis is a major painful and debilitating orthopaedic disease affecting a large number of adult individuals on a global scale. Over the years, this severe condition has been widely studied and while many alternatives have been utilized, platelet-rich plasma (PRP) remains one of the most popular solutions among researchers and clinicians alike. While there are different formulations and techniques involved in the preparation of PRP, produced either manually or via the use of commercial kits, the presence of leukocytes in a PRP mixture is a factor that raises concern due to their well-known pro-inflammatory activity. Although it is reasonable to worry about this, it should be taken into consideration that in order for the healing process to occur, the inflammatory phase is necessary. Leukocytes present in the inflammatory phase release both pro and anti-inflammatory molecules and, when combined with activated platelets, their potential increases. Additionally, due to the macrophage's plasticity to switch from the subtype 1 to subtype 2, it is suggested that the inclusion of the components from the buffy coat layer in a PRP mixture, classifying it as leukocyte-rich platelet-rich plasma or L-PRP, may provide benefits instead of detriments, from a standpoint of the regenerative potential of PRP.
RESUMEN
Leukocyte and platelet-rich plasma (L-PRP) is an autologous product that when activated forms fibrin nanofibers, which are useful in regenerative medicine. As an important part of the preparation of L-PRP, the centrifugation parameters may affect the release of soluble factors that modulate the behavior of the cells in the nanofibers. In this study, we evaluated the influences of four different centrifugation conditions on the concentration of platelets and leukocytes in L-PRP and on the anabolic/catabolic balance of the nanofiber microenvironment. Human adipose-derived mesenchymal stem cells (h-AdMSCs) were seeded in the nanofibers, and their viability and growth were evaluated. L-PRPs prepared at 100× g and 100 + 400× g released higher levels of transforming growth factor (TGF)-ß1 and platelet-derived growth factor (PDGF)-BB due to the increased platelet concentration, while inflammatory cytokines interleukin (IL)-8 and tumor necrosis factor (TNF)-α were more significantly released from L-PRPs prepared via two centrifugation steps (100 + 400× g and 800 + 400× g) due to the increased concentration of leukocytes. Our results showed that with the exception of nanofibers formed from L-PRP prepared at 800 + 400× g, all other microenvironments were favorable for h-AdMSC proliferation. Here, we present a reproducible protocol for the standardization of L-PRP and fibrin nanofibers useful in clinical practices with known platelet/leukocyte ratios and in vitro evaluations that may predict in vivo results.
Asunto(s)
Centrifugación , Fibrina , Células Madre Mesenquimatosas/metabolismo , Nanofibras , Plasma Rico en Plaquetas , Plaquetas/metabolismo , Proliferación Celular , Células Cultivadas , Citocinas/metabolismo , Fibrina/química , Humanos , Mediadores de Inflamación/metabolismo , Leucocitos/metabolismo , Nanofibras/química , Nanofibras/ultraestructuraRESUMEN
Hyaluronic acid (HA) is a macromolecule with valuable benefits over its range of molar masses (MM). Degradation studies are relevant to maintain the same purity level in biomedical studies when using HA of different MM. We degraded HA via high pH and temperature and evaluated its MM, solution behavior, and structure over time. After 24 h, low MM HA was predominant, and the MM decreased from 753 to 36.2 kDa. Dynamic light scattering (DLS) showed a decrease in the number of HA populations, and the solution tended to be less polydispersed. The zeta potential varied from - 10 to - 30 mV, close to the stable range. FTIR showed that the primary structure of HA was affected after only 48 h of reaction. These results are relevant for the production of low MM HA to be used or mixed with high MM HA, generating structured biomaterials for biomedical applications.
Asunto(s)
Calor , Ácido Hialurónico/química , Concentración de Iones de Hidrógeno , Espectroscopía Infrarroja por Transformada de FourierRESUMEN
This study describes the encapsulation of the local anaesthetic lidocaine (LDC) in large unilamellar liposomes (LUV) prepared in a scalable procedure, with hydrogenated soybean phosphatidylcholine, cholesterol and mannitol. Structural properties of the liposomes were assessed by dynamic light scattering, nanoparticle tracking analysis and transmission electron microscopy. A modified, two-compartment Franz-cell system was used to evaluate the release kinetics of LDC from the liposomes. The in vivo anaesthetic effect of liposomal LDC 2% (LUVLDC) was compared to LDC 2% solution without (LDCPLAIN) or with the vasoconstrictor epinephrine (1:100 000) (LDCVASO), in rat infraorbital nerve blockade model. The structural characterization revealed liposomes with spherical shape, average size distribution of 250 nm and low polydispersity even after LDC incorporation. Zeta potential laid around -30 mV and the number of suspended liposomal particles was in the range of 1012 vesicles/mL. Also the addition of cryoprotectant (mannitol) did not provoke structural changes in liposomes properties. In vitro release profile of LDC from LUV fits well with a biexponential model, in which the LDC encapsulated (EE% = 24%) was responsible for an increase of 67% in the release time in relation to LDCPLAIN (p < 0.05). Also, the liposomal formulation prolonged the sensorial nervous blockade duration (â¼70 min), in comparison with LDCPLAIN (45 min), but less than LDCVASO (130 min). In this context, this study showed that the liposomal formulations prepared by scalable procedure were suitable to promote longer and safer buccal anaesthesia, avoiding side effects of the use of vasoconstrictors.
Asunto(s)
Anestésicos Locales/administración & dosificación , Lidocaína/administración & dosificación , Liposomas , Administración Bucal , Animales , Composición de Medicamentos , Sistemas de Liberación de Medicamentos , Liposomas/química , Masculino , Ratas , Ratas WistarRESUMEN
Humic acids (HAs) are macromolecules that comprise humic substances (HS), which are organic matter distributed in terrestrial soil, natural water, and sediment. HAs differ from the other HS fractions (fulvic acid and humins) in that they are soluble in alkaline media, partially soluble in water, and insoluble in acidic media. Due to their amphiphilic character, HAs form micelle-like structures in neutral to acidic conditions, which are useful in agriculture, pollution remediation, medicine and pharmaceuticals. HAs have undefined compositions that vary according to the origin, process of obtainment, and functional groups present in their structures, such as quinones, phenols, and carboxylic acids. Quinones are responsible for the formation of reactive oxygen species (ROS) in HAs, which are useful for wound healing and have fungicidal/bactericidal properties. Phenols and carboxylic acids deprotonate in neutral and alkaline media and are responsible for various other functions, such as the antioxidant and anti-inflammatory properties of HAs. In particular, the presence of phenolic groups in HAs provides antioxidant properties due to their free radical scavenging capacity. This paper describes the main multifunctionalities of HAs associated with their structures and properties, focusing on human health applications, and we note perspectives that may lead to novel technological developments. To the best of our knowledge, this is the first review to address this topic from this approach.
Asunto(s)
Antioxidantes/química , Sustancias Húmicas/análisis , Antioxidantes/metabolismo , Antivirales/química , Antivirales/farmacología , Citocinas/antagonistas & inhibidores , Citocinas/metabolismo , Humanos , Especies Reactivas de Oxígeno/metabolismo , Replicación Viral/efectos de los fármacosRESUMEN
This study aimed to evaluate the in vitro biological effectiveness of chitosan microparticles crosslinked with sodium tripolyphosphate (TPP) in combination with activated pure platelet-rich plasma (aP-PRP) as an injectable composite scaffold for growth factors release, cell proliferation and osteogenic differentiation. Two main novelties were addressed in the field of scaffolds in regenerative medicine: the first is the approach including simultaneously the three vertices of the proliferation triangle formed by the capabilities genic progenitor cells, conductive scaffolds and inductive growth factors, which are provided by platelet rich plasma (PRP); secondly, the approach of an injectable composite scaffolds formed by the fibrin network from aP-PRP and the chitosan microparticles crosslinked with TPP. The microparticles were prepared by vortexing the chitosan and TPP solutions. The ionic crosslinking of chitosan with TPP was made at mass ratios of 2:1, 5:1, and 10:1 at pH 4.0. P-PRP was obtained via the controlled centrifugation of whole blood. The composite scaffolds were prepared by adding the microparticles to immediately activated P-PRP. The results showed that the microparticles had adequate physicochemical and mechanical properties for injection. Furthermore, the microparticles controlled the release of growth factors from P-PRP. The proliferation of human adipose-derived mesenchymal stem cells was lower than in aP-PRP alone but significant at a 2:1 chitosan-TPP mass ratio. Osteogenic differentiation was stimulated at all studied mass ratios, as indicated by the alkaline phosphatase activity. These results offer perspectives for optimizing the composite scaffold, and to prove its potential as an injectable scaffold in regenerative medicine.
RESUMEN
This work evaluated the effects of UV irradiation, plasma radiation, steam and 70% ethanol treatments on the sterilization and integrity of auto-crosslinked hyaluronic acid (HA-ACP) scaffolds structured in microparticles and sponges aiming in vivo applications for regenerative medicine of bone tissue. The integrity of the microparticles was characterized by rheological behavior, while for the sponges, it was characterized by scanning electron microscopy, Fourier transform infrared spectroscopy and differential scanning calorimetry. The effectiveness of the sterilization treatment was verified by the number of microorganism colonies in the samples after the treatments. In conclusion, plasma radiation was the best treatment for the sponges, while steam sterilization in the autoclave at 126°C (1.5 kgf/cm2) for 5 min was the best treatment for the microparticles.
Asunto(s)
Desinfección/métodos , Ácido Hialurónico/química , Nanopartículas/química , Esterilización/métodos , Andamios del Tejido/química , Huesos , Rastreo Diferencial de Calorimetría , Fenómenos Químicos , Etanol/farmacología , Microscopía Electrónica de Rastreo , Microesferas , Nanopartículas/microbiología , Radiación , Espectroscopía Infrarroja por Transformada de Fourier , Ingeniería de Tejidos , Andamios del Tejido/microbiología , Rayos UltravioletaRESUMEN
This study aimed to evaluate the in vitro performance of activated platelet-rich plasma associated with porous sponges of chitosan as a composite scaffold for proliferation and osteogenic differentiation of human adipose tissue-derived mesenchymal stem cells. The sponges were prepared by controlled freezing (-20, -80, or -196°C) and lyophilization of chitosan solutions (1, 2, or 3% w/v). The platelet-rich plasma was obtained from controlled centrifugation of whole blood and activated with calcium and autologous serum. The composite scaffolds were prepared by embedding the sponges with the activated platelet-rich plasma. The results showed the performance of the scaffolds was superior to that of activated platelet-rich plasma alone, in terms of delaying the release of growth factors and increased proliferation of the stem cells. The best preparation conditions of chitosan composite scaffolds that coordinated the physicochemical and mechanical properties and cell proliferation were 3% (w/v) chitosan and a -20°C freezing temperature, while -196°C favored osteogenic differentiation. Although the composite scaffolds are promising for regenerative medicine, the structures require stabilization to prevent the collapse observed after five days.
Asunto(s)
Quitosano/química , Plasma Rico en Plaquetas , Andamios del Tejido/química , Materiales Biocompatibles/química , Diferenciación Celular , Proliferación Celular , Congelación , Humanos , Técnicas In Vitro , Ensayo de Materiales , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Microscopía Electrónica de Rastreo , Osteogénesis , Porosidad , Medicina Regenerativa , Tapones Quirúrgicos de Gaza , Ingeniería de Tejidos/métodosRESUMEN
Viscosupplements, used for treating joint and cartilage diseases, restore the rheological properties of synovial fluid, regulate joint homeostasis and act as scaffolds for cell growth and tissue regeneration. Most viscosupplements are hydrogels composed of hyaluronic acid (HA) microparticles suspended in fluid HA. These microparticles are crosslinked with chemicals to assure their stability against enzyme degradation and to prolong the action of the viscosupplement. However, the crosslinking also modifies the mechanical, swelling and rheological properties of the HA microparticle hydrogels, with consequences on the effectiveness of the application. The aim of this study is to correlate the crosslinking degree (CD) with these properties to achieve modulation of HA/DVS microparticles through CD control. Because divinyl sulfone (DVS) is the usual crosslinker of HA in viscosupplements, we examined the effects of CD by preparing HA microparticles at 1:1, 2:1, 3:1, and 5:1 HA/DVS mass ratios. The CD was calculated from inductively coupled plasma spectrometry data. HA microparticles were previously sized to a mean diameter of 87.5 µm. Higher CD increased the viscoelasticity and the extrusion force and reduced the swelling of the HA microparticle hydrogels, which also showed Newtonian pseudoplastic behavior and were classified as covalent weak. The hydrogels were not cytotoxic to fibroblasts according to an MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide) assay.
Asunto(s)
Reactivos de Enlaces Cruzados/química , Ácido Hialurónico/química , Ensayo de Materiales , Animales , Supervivencia Celular , Chlorocebus aethiops , Células VeroRESUMEN
Hyaluronic acid (HA) is a biopolymer with important applications in the pharmaceutical, medical, and cosmetic fields. This work explores the potentialities of a cylindrical polyurethane foam dowel with central aeration as a novel packed bed bioreactor for the production of HA. The goals were to provide a large surface area for oxygen transfer through the patches of liquid film that form in the pores of the foam in which cell proliferation and HA production occur and to easily recover the HA produced. The resulting yields of HA/cell were higher than 1, and the produced HA was completely recovered by pressing the foam. The external conditions that inhibit catabolism, the deviation of energetic metabolism toward the production of HA, were modulated by aeration and the initial glucose concentration. The production of HA was reproducible in 12 successive fermentation cycles. These findings contribute to the development of efficient strategies for the controlled production and recovery of HA.
Asunto(s)
Técnicas de Cultivo Celular por Lotes/métodos , Reactores Biológicos/microbiología , Ácido Hialurónico/biosíntesis , Poliuretanos/química , Streptococcus equi/metabolismo , Gases/química , Ácido Hialurónico/aislamiento & purificación , Streptococcus equi/citologíaRESUMEN
Soy peptone (SP) was studied as nutrient source in replacement of the conventional media as Brain-Heart Infusion (BHI) and sheep blood in the first seed culture medium in Petri plates of Streptococcus zooepidemicus. This substitution, aimed at meeting the claim of the pharmaceutical and cosmetics industries, for the removal of animal sources of the culture media used in obtaining their products for safety reasons. The animal sources were used as a control. The effects of this substitution were studied in fermentations carried out at 37°C and 150rpm in 250mL Erlenmeyer flasks containing 100mL culture medium containing glucose and SP only. The replacement of animal nutrient sources by SP to about twice the BHI concentration did not alter the amount of the produced HA, or caused deviations in the metabolism of the microorganism in favor of HA to the detriment of cell growth.
Asunto(s)
Ácido Hialurónico/metabolismo , Peptonas/metabolismo , Proteínas de Soja/metabolismo , Streptococcus equi/metabolismo , Animales , Proliferación Celular , Fermentación , Glucosa/metabolismoRESUMEN
Hyaluronic acid is a hydrophilic mucopolysaccharide composed of alternating units of D-glucuronic acid and N-acetylglucosamine. It is used in many medical, pharmaceutical, and cosmetic applications, as sponges, films, or particle formulations. Hyaluronic acid nanoparticles can be synthesized free of oil and surfactants by nanoprecipitation in organic solvents, followed by chemical crosslinking. The organic solvent plays an important role in particles size and structure. Therefore, this study aimed to investigate the influence of acetone, ethanol, and isopropyl alcohol on the synthesis and physico-chemical properties of hyaluronic acid nanoparticles. Particles were crosslinked with adipic hydrazide and chloride carbodiimide under controlled conditions. The nanoparticles obtained with all three studied solvents were moderately electrostatically stable. Experiments with acetone produced the smallest particle size (120.44 nm) and polydispersity (0.27). The size and polydispersity of hyaluronic acid nanoparticles correlated with the surface tension between water and the organic solvents, not with the thermodynamic affinity of water for the organic solvents.
Asunto(s)
Ácido Hialurónico/química , Nanopartículas , Compuestos Orgánicos/química , Solventes/química , Dicroismo Circular , Tamaño de la PartículaRESUMEN
The cashew fruit (Anacardium occidentale L.) has been used as a promising agricultural resource for the production of low-molecular weight (M(W)) hyaluronic acid (HA) (10(4)-10(5) Da). The cashew juice is a rich source of vitamin C containing, 1.2-2.0 g L(-1). This work explores the effects of the initial concentration of the ascorbate on the solid fermentation of the juice-moisturized bagasse from the cashew apple fruit. The results show that the M(W) reduction of HA is proportional to the initial ascorbate concentration. The presence of ascorbate did not influence the Streptococcus zooepidemicus metabolism. However, the HA productivity was increased from 0.18 to 0.28 mg g(-1) h(-1) when the ascorbate concentration ranged from 1.7 to 10 mg mL(-1). These findings contribute to the controlled production of HA in a low M(W) range, which is important in cell signalization, angiogenesis and nanoparticles production.
Asunto(s)
Anacardium/metabolismo , Ácido Ascórbico/metabolismo , Celulosa/metabolismo , Ácido Hialurónico/metabolismo , Streptococcus equi/crecimiento & desarrollo , Streptococcus equi/metabolismo , Anacardium/química , Celulosa/química , Fermentación , Ácido Hialurónico/química , Hidrólisis , Peso Molecular , Oxidación-ReducciónRESUMEN
We developed cationic liposomes containing DNA through a conventional process involving steps of (i) preformation of liposomes, (ii) extrusion, (iii) drying and rehydration and (iv) DNA complexation. Owing to its high prophylactic potentiality against tuberculosis, which had already been demonstrated in preclinical assays, we introduced modifications into the conventional process towards getting a simpler and more economical process for further scale-up. Elimination of the extrusion step, increasing the lipid concentration (from 16 to 64 mM) of the preformed liposomes and using good manufacturing practice bulk lipids (96-98% purity) instead of analytical grade purity lipids (99.9-100%) were the modifications studied. The differences in the physico-chemical properties, such as average diameter, zeta potential, melting point and morphology of the liposomes prepared through the modified process, were not as significant for the biological properties, such as DNA loading on the cationic liposomes, and effective immune response in mice after immunisation as the control liposomes prepared through the conventional process. Beneficially, the modified process increased productivity by 22% and reduced the cost of raw material by 75%.
Asunto(s)
Vectores Genéticos , Lípidos/química , Vacunas/química , Animales , Cationes , Femenino , Liposomas , Ratones , Ratones Endogámicos BALB C , Vacunas/genéticaRESUMEN
We report the effects of a synthetic peptide designed to act as a nuclear localization signal on the treatment of tuberculosis. The peptide contains 21 amino acid residues with the following specific domains: nuclear localization signal from SV 40T, cationic shuttle sequence, and cysteamide group at the C-terminus. The peptide was complexed with the plasmid DNAhsp65 and incorporated into cationic liposomes, forming a pseudo-ternary complex. The same cationic liposomes, composed of egg chicken L-α-phosphatidylcholine, 1,2-dioleoyl-3-trimethylammonium-propane, and 1,2-dioleoyl-3-trimethylammonium-propane (2:1:1M), were previously evaluated as a gene carrier for tuberculosis immunization protocols with DNAhsp65. The pseudo-ternary complex presented a controlled size (250 nm), spherical-like shape, and various lamellae in liposomes as evaluated by transmission electron microscopy. An assay of fluorescence probe accessibility confirmed insertion of the peptide/DNA into the liposome structure. Peptide addition conferred no cytotoxicity in vitro, and similar therapeutic effects against tuberculosis were seen with four times less DNA compared with naked DNA treatment. Taken together, the results indicate that the pseudo-ternary complex is a promising gene vaccine for tuberculosis treatment. This work contributes to the development of multifunctional nanostructures in the search for strategies for in vivo DNA delivery.
Asunto(s)
ADN/uso terapéutico , Liposomas/uso terapéutico , Péptidos/uso terapéutico , Tuberculosis/tratamiento farmacológico , Animales , Cationes/química , Cationes/uso terapéutico , ADN/química , Terapia Genética , Liposomas/química , Ratones , Mycobacterium tuberculosis/aislamiento & purificación , Péptidos/síntesis química , Péptidos/químicaRESUMEN
Surface pressure (π)-molecular area (A) curves were used to characterize the packing of pseudo-ternary mixed Langmuir monolayers of egg phosphatidylcholine (EPC), 1,2-dioleoyl-3-trimethylammonium propane (DOTAP) and L-α-dioleoyl phosphatidylethanolamine (DOPE). This pseudo-ternary mixture EPC/DOPE/DOTAP has been successfully employed in liposome formulations designed for DNA non-viral vectors. Pseudo-binary mixtures were also studied as a control. Miscibility behavior was inferred from π-A curves applying the additivity rule by calculating the excess free energy of mixture (ΔG(Exc)). The interaction between the lipids was also deduced from the surface compressional modulus (C(s)(-1)). The deviation from ideality shows dependence on the lipid polar head type and monolayer composition. For lower DOPE concentrations, the forces are predominantly attractive. However, if the monolayer is DOPE rich, the DOTAP presence disturbs the PE-PE intermolecular interaction and the net interaction is then repulsive. The ternary monolayer EPC/DOPE/DOTAP presented itself in two configurations, modulated by the DOPE content, in a similar behavior to the DOPE/DOTAP monolayers. These results contribute to the understanding of the lipid interactions and packing in self-assembled systems associated with the in vitro and in vivo stability of liposomes.