Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 953: 175987, 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39244067

RESUMEN

The presence of heavy metals and metalloids (metal(loid)s) in the food chain is a global problem, and thus, metal(loid)s are considered to be Potentially Toxic Elements (PTEs). Arsenic (As), lead (Pb), mercury (Hg), and cadmium (Cd) are identified as prominent hazards related to human health risks throughout the food chain. This study aimed to carry out a source attribution for metal(loid)s in shallow topsoil of north-midlands, northwest, and border counties of the Republic of Ireland, followed by an assessment of the potential ecological and human health risks. The positive Matrix Factorization (PMF) was used for source characterization of PTEs, followed by the Monte Carlo simulation method, used for a probabilistic model to evaluate potential human health risks. The mean concentrations of prioritized metal(loid)s in the topsoil range in the order of Pb (28.83 mg kg-1) > As (7.81 mg kg-1) > Cd (0.51 mg kg-1) > Hg (0.11 mg kg-1) based on the open-source Tellus dataset. This research identified three primary sources of metal(loid) pollution: geogenic sources (36 %), mixed sources of historical mining and natural origin (33 %), and anthropogenic activities (31 %). The ecological risk assessment showed that Ireland's soil exhibits low-moderate pollution levels however, concerns remain for Cd and As levels. All metal(loid)s except Cd showed acceptable non-carcinogenic risk, while Cd and As accounted for high to moderate potential cancer risks. Potato consumption (if grown on land with elevated metal(loid) levels), Cd concentration in soil, and bioaccumulation factor of Cd in potatoes were the three most sensitive parameters. In conclusion, metal(loid)s in Ireland present low to moderate ecological and human health risks. It underscores the need for policies and remedial strategies to monitor metal(loid) levels in agricultural soil regularly and the production of crops with low bioaccumulation in regions with elevated metal(loid) levels.

2.
Environ Sci Pollut Res Int ; 31(41): 53839-53855, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38502265

RESUMEN

The characteristics of the vegetation fire (VF) regime are strongly influenced by geographical variables such as regional physiographic settings, location, and climate. Understanding the VF regime is extremely important for managing and mitigating the impacts of fires on ecosystems, communities, and human activities in forest fire-prone regions. The present study thereby aimed to explore the potential effects of the confounding factors on VF in India to offer actionable and achievable solutions for mitigating this concurring environmental issue sustainably. A global burn area (250 m) data (Fire-CCIv5.1) and fire radiative power (FRP) were used to investigate the dynamics of VF across seven different divisions in India. The study also used the maximum and minimum temperatures, precipitation, population density, and intensity of human modification to model forest burn areas (including grassland). The Coupled Model Intercomparison Project-6 (CMIP6) was used to predict the burn area for 2030 and 2050 future climate scenarios. The present study accounted for a sizable increasing trend of VF during 2001-2019 period. The highest increasing trend was found in central India (513 and 343 km2 year-1 in the forest and crop fire, respectively), followed by southern India (364 km2 year-1 in forest fire), and upper Indo-Gangetic plain (128 km2 year-1 in crop fire). The FRP has varied significantly across the divisions, with the north-eastern Himalayas exhibiting the highest FRP hotspot. The maximum and minimum temperatures have the greatest influence on forest fires, according to Random Forest (RF) modeling. The estimated pre-monsoonal burn area for 2050 and 2050 future scenarios suggested a more frequent forest fire occurrence across India, particularly in southern and central India. A comprehensive forest fire control policy is therefore essential to safeguard and conserve forest cover in the regions, affected by forest fire periodically.


Asunto(s)
Ecosistema , Incendios , Bosques , India , Incendios Forestales , Cambio Climático , Humanos , Modelos Teóricos , Clima
3.
J Environ Manage ; 331: 117183, 2023 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-36634425

RESUMEN

Nature-based solutions (NbS) can be beneficial to help human communities build resilience to climate change by managing and mitigating related hydro-meteorological hazards (HMHs). Substantial research has been carried out in the past on the detection and assessment of HMHs and their derived risks. Yet, knowledge on the performance and functioning of NbS to address these hazards is severely lacking. The latter is exacerbated by the lack of practical and viable approaches that would help identify and select NbS for specific problems. The EU-funded OPERANDUM project established seven Open-Air Laboratories (OALs) across Europe to co-develop, test, and generate an evidence base from innovative NbS deployed to address HMHs such as flooding, droughts, landslides, erosion, and eutrophication. Herein, we detail the original approaches that each OAL followed in the process of identifying and selecting NbS for specific hazards with the aim of proposing a novel, generic framework for selecting NbS. We found that the process of selecting NBS was overall complex and context-specific in all the OALs, and it comprised 26 steps distributed across three stages: (i) Problem recognition, (ii) NbS identification, and (iii) NbS selection. We also identified over 20 selection criteria which, in most cases, were shared across OALs and were chiefly related to sustainability aspects. All the identified NbS were related to the regulation of the water cycle, and they were mostly chosen according to three main factors: (i) hazard type, (ii) hazard scale, and (iii) OAL size. We noticed that OALs exposed to landslides and erosion selected NbS capable to manage water budgets within the soil compartment at the local or landscape scale, while OALs exposed to floods, droughts, and eutrophication selected approaches to managing water transport and storage at the catchment scale. We successfully portrayed a synthesis of the stages and steps followed in the OALs' NbS selection process in a framework. The framework, which reflects the experiences of the stakeholders involved, is inclusive and integrated, and it can serve as a basis to inform NbS selection processes whilst facilitating the organisation of diverse stakeholders working towards finding solutions to natural hazards. We animate the future development of the proposed framework by integrating financial viability steps. We also encourage studies looking into the implementation of the proposed framework through quantitative approaches integrating multi-criteria analyses.


Asunto(s)
Ecosistema , Laboratorios , Humanos , Europa (Continente) , Inundaciones , Sequías
4.
Mar Pollut Bull ; 178: 113527, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35381459

RESUMEN

The increasing level of marine plastic pollution poses severe threats to the marine ecosystem and biodiversity. Open remote sensing data and advanced machine learning (ML) algorithms could be a cost-effective solution for identifying large plastic patches across the scale. The potential application of such resources in detecting and discriminating marine floating plastics (MFP) are not fully explored. Therefore, the present study attempted to explore the full functionality of open Sentinel satellite data and ML models for detecting and classifying the MFP in Mytilene (Greece), Limassol (Cyprus), Skala Loutron, Greece, Calabria (Italy), and Beirut (Lebanon). Two ML models, i.e. Support Vector Machine (SVM) and Random Forest (RF), were utilized to perform the classification analysis. In-situ plastic location data was collected from the control experiments conducted in Mytilene, Greece (in 2018 and 2019), Skala Loutron, Greece (2021), and Limassol, Cyprus (2018), and the same was considered for training the models. The accuracy and performances of the trained models were further tested on unseen new data collected from Calabria, Italy and Beirut, Lebanon. Both remote sensing bands and spectral indices were used for developing the ML models. A spectral signature profile for marine plastic was created for discriminating the floating plastic from other marine debris. A newly developed index, kernel Normalized Difference Vegetation Index (kNDVI), was incorporated into the modelling to examine its contribution to model performances. Both SVM and RF were performed well in five models and test case combinations. Among the two ML models, the highest performance was measured for the RF. The inclusion of kNDVI was found effective and increased the model performances, reflected by high balanced accuracy measured for model 2 (~89% to ~100% for SVM and ~92% to ~98% for RF). An automated floating plastic detection system was developed and tested in Calabria and Beirut using the best-performed model. The trained model had detected the floating plastic for both sites with ~80%-90%% accuracy. Among the six predictors, the Floating Debris Index (FDI) was the most important variable for detecting marine floating plastic. These findings collectively suggest that high-resolution remote sensing imagery and the automated ML models can be an effective alternative for the cost-effective detection of MFP. Future research will be directed toward collecting quality training data to develop robust automated models and prepare a spectral library for different plastic objects for discriminating plastic from other marine floating debris and advancing the marine plastic pollution research by taking full advantage of open-source data and technologies.


Asunto(s)
Ecosistema , Plásticos , Monitoreo del Ambiente , Aprendizaje Automático , Plásticos/análisis , Residuos/análisis
5.
Environ Res ; 210: 112818, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35104482

RESUMEN

Forest fires impact on soil, water, and biota resources. The current forest fires in the West Coast of the United States (US) profoundly impacted the atmosphere and air quality across the ecosystems and have caused severe environmental and public health burdens. Forest fire led emissions could significantly exacerbate the air pollution level and, therefore, would play a critical role if the same occurs together with any epidemic and pandemic health crisis. Limited research is done so far to examine its impact in connection to the current pandemic. As of October 21, nearly 8.2 million acres of forest area were burned, with more than 25 casualties reported so far. In-situ air pollution data were utilized to examine the effects of the 2020 forest fire on atmosphere and coronavirus (COVID-19) casualties. The spatial-temporal concentrations of particulate matter (PM2.5 and PM10) and Nitrogen Dioxide (NO2) were collected from August 1 to October 30 for 2020 (the fire year) and 2019 (the reference year). Both spatial (Multiscale Geographically Weighted Regression) and non-spatial (Negative Binomial Regression) analyses were performed to assess the adverse effects of fire emission on human health. The in-situ data-led measurements showed that the maximum increases in PM2.5, PM10, and NO2 concentrations (µg/m3) were clustered in the West Coastal fire-prone states during August 1 - October 30, 2020. The average concentration (µg/m3) of particulate matter (PM2.5 and PM10) and NO2 was increased in all the fire states severely affected by forest fires. The average PM2.5 concentrations (µg/m3) over the period were recorded as 7.9, 6.3, 5.5, and 5.2 for California, Colorado, Oregon, and Washington in 2019, increasing up to 24.9, 13.4, 25.0, and 17.0 in 2020. Both spatial and non-spatial regression models exhibited a statistically significant association between fire emission and COVID-19 incidents. Such association has been demonstrated robust and stable by a total of 30 models developed for analyzing the spatial non-stationary and local association. More in-depth research is needed to better understand the complex relationship between forest fire emission and human health.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , COVID-19 , Incendios Forestales , Contaminantes Atmosféricos/análisis , Contaminación del Aire/análisis , COVID-19/epidemiología , Ecosistema , Monitoreo del Ambiente , Humanos , Dióxido de Nitrógeno/análisis , Material Particulado/análisis , Estados Unidos/epidemiología
6.
Philos Trans R Soc Lond B Biol Sci ; 376(1834): 20200175, 2021 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-34365828

RESUMEN

The United Nations Sustainable Development Goal 6 aims for clean water and sanitation for all by 2030, through eight subgoals dealing with four themes: (i) water quantity and availability, (ii) water quality, (iii) finding sustainable solutions and (iv) policy and governance. In this opinion paper, we assess how soils and associated land and water management can help achieve this goal, considering soils at two scales: local soil health and healthy landscapes. The merging of these two viewpoints shows the interlinked importance of the two scales. Soil health reflects the capacity of a soil to provide ecosystem services at a specific location, taking into account local climate and soil conditions. Soil is also an important component of a healthy and sustainable landscape, and they are connected by the water that flows through the soil and the transported sediments. Soils are linked to water in two ways: through plant-available water in the soil (green water) and through water in surface bodies or available as groundwater (blue water). In addition, water connects the soil scale and the landscape scale by flowing through both. Nature-based solutions at both soil health and landscape-scale can help achieve sustainable future development but need to be embedded in good governance, social acceptance and economic viability. This article is part of the theme issue 'The role of soils in delivering Nature's Contributions to People'.


Asunto(s)
Clima , Conservación de los Recursos Hídricos , Ecosistema , Suelo/química , Calidad del Agua
7.
Sci Total Environ ; 784: 147058, 2021 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-34088074

RESUMEN

Nature-based solutions (NBS) for hydro-meteorological risks (HMRs) reduction and management are becoming increasingly popular, but challenges such as the lack of well-recognised standard methodologies to evaluate their performance and upscale their implementation remain. We systematically evaluate the current state-of-the art on the models and tools that are utilised for the optimum allocation, design and efficiency evaluation of NBS for five HMRs (flooding, droughts, heatwaves, landslides, and storm surges and coastal erosion). We found that methods to assess the complex issue of NBS efficiency and cost-benefits analysis are still in the development stage and they have only been implemented through the methodologies developed for other purposes such as fluid dynamics models in micro and catchment scale contexts. Of the reviewed numerical models and tools MIKE-SHE, SWMM (for floods), ParFlow-TREES, ACRU, SIMGRO (for droughts), WRF, ENVI-met (for heatwaves), FUNWAVE-TVD, BROOK90 (for landslides), TELEMAC and ADCIRC (for storm surges) are more flexible to evaluate the performance and effectiveness of specific NBS such as wetlands, ponds, trees, parks, grass, green roof/walls, tree roots, vegetations, coral reefs, mangroves, sea grasses, oyster reefs, sea salt marshes, sandy beaches and dunes. We conclude that the models and tools that are capable of assessing the multiple benefits, particularly the performance and cost-effectiveness of NBS for HMR reduction and management are not readily available. Thus, our synthesis of modelling methods can facilitate their selection that can maximise opportunities and refute the current political hesitation of NBS deployment compared with grey solutions for HMR management but also for the provision of a wide range of social and economic co-benefits. However, there is still a need for bespoke modelling tools that can holistically assess the various components of NBS from an HMR reduction and management perspective. Such tools can facilitate impact assessment modelling under different NBS scenarios to build a solid evidence base for upscaling and replicating the implementation of NBS.

8.
Environ Res ; 196: 110927, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33675798

RESUMEN

Clean air is a fundamental necessity for human health and well-being. Anthropogenic emissions that are harmful to human health have been reduced substantially under COVID-19 lockdown. Satellite remote sensing for air pollution assessments can be highly effective in public health research because of the possibility of estimating air pollution levels over large scales. In this study, we utilized both satellite and surface measurements to estimate air pollution levels in 20 cities across the world. Google Earth Engine (GEE) and Sentinel-5 Precursor TROPOspheric Monitoring Instrument (TROPOMI) application were used for both spatial and time-series assessment of tropospheric Nitrogen Dioxide (NO2) and Carbon Monoxide (CO) statuses during the study period (1 February to May 11, 2019 and the corresponding period in 2020). We also measured Population-Weighted Average Concentration (PWAC) of particulate matter (PM2.5 and PM10) and NO2 using gridded population data and in-situ air pollution estimates. We estimated the economic benefit of reduced anthropogenic emissions using two valuation approaches: (1) the median externality value coefficient approach, applied for satellite data, and (2) the public health burden approach, applied for in-situ data. Satellite data have shown that ~28 tons (sum of 20 cities) of NO2 and ~184 tons (sum of 20 cities) of CO have been reduced during the study period. PM2.5, PM10, and NO2 are reduced by ~37 (µg/m3), 62 (µg/m3), and 145 (µg/m3), respectively. A total of ~1310, ~401, and ~430 premature cause-specific deaths were estimated to be avoided with the reduction of NO2, PM2.5, and PM10. The total economic benefits (Billion US$) (sum of 20 cities) of the avoided mortality are measured as ~10, ~3.1, and ~3.3 for NO2, PM2.5, and PM10, respectively. In many cases, ground monitored data was found inadequate for detailed spatial assessment. This problem can be better addressed by incorporating satellite data into the evaluation if proper quality assurance is achieved, and the data processing burden can be alleviated or even removed. Both satellite and ground-based estimates suggest the positive effect of the limited human interference on the natural environments. Further research in this direction is needed to explore this synergistic association more explicitly.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , COVID-19 , Contaminantes Atmosféricos/análisis , Contaminación del Aire/análisis , Ciudades , Control de Enfermedades Transmisibles , Monitoreo del Ambiente , Humanos , Material Particulado/análisis , SARS-CoV-2
9.
Sustain Cities Soc ; 68: 102784, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33643810

RESUMEN

Since December 2019, the world has witnessed the stringent effect of an unprecedented global pandemic, coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). As of January 29,2021, there have been 100,819,363 confirmed cases and 2,176,159 deaths reported. Among the countries affected severely by COVID-19, the United States tops the list. Research has been conducted to discuss the causal associations between explanatory factors and COVID-19 transmission in the contiguous United States. However, most of these studies focus more on spatial associations of the estimated parameters, yet exploring the time-varying dimension in spatial econometric modeling appears to be utmost essential. This research adopts various relevant approaches to explore the potential effects of driving factors on COVID-19 counts in the contiguous United States. A total of three global spatial regression models and two local spatial regression models, the latter including geographically weighted regression (GWR) and multiscale GWR (MGWR), are performed at the county scale to take into account the scale effects. For COVID-19 cases, ethnicity, crime, and income factors are found to be the strongest covariates and explain most of the variance of the modeling estimation. For COVID-19 deaths, migration (domestic and international) and income factors play a critical role in explaining spatial differences of COVID-19 deaths across counties. Such associations also exhibit temporal variations from March to July, as supported by better performance of MGWR than GWR. Both global and local associations among the parameters vary highly over space and change across time. Therefore, time dimension should be paid more attention to in the spatial epidemiological analysis. Among the two local spatial regression models, MGWR performs more accurately, as it has slightly higher Adj. R2 values (for cases, R2 = 0.961; for deaths, R2 = 0.962), compared to GWR's Adj. R2 values (for cases, R2 = 0.954; for deaths, R2 = 0.954). To inform policy-makers at the nation and state levels, understanding the place-based characteristics of the explanatory forces and related spatial patterns of the driving factors is of paramount importance. Since it is not the first time humans are facing public health emergency, the findings of the present research on COVID-19 therefore can be used as a reference for policy designing and effective decision making.

10.
J Artif Soc Soc Simul ; 24(3)2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34992496

RESUMEN

Understanding household labor and land allocation decisions under agro-environmental policies is challenging due to complex human-environment interactions. Here, we develop a spatially explicit agent-based model based on spatial and socioeconomic data to simulate households' land and labor allocation decisions and investigate the impacts of two forest restoration and conservation programs and one agricultural subsidy program in rural China. Simulation outputs reveal that the forest restoration program accelerates labor out-migration and cropland shrink, while the forest conservation program promotes livelihood diversification via increasing non-farm employment. Meanwhile, the agricultural subsidy program keeps labor for cultivation on land parcels with good quality, but appears less effective for preventing marginal croplands from being abandoned. The policy effects on labor allocation substantially differ between rules based on bounded rational and empirical knowledge of defining household decisions, particularly on sending labor out-migrants and engaging in local off-farm jobs. Land use patterns show that the extent to which households pursue economic benefits through shrinking cultivated land is generally greater under bounded rationality than empirical knowledge. Findings demonstrate nonlinear social-ecological impacts of the agro-environmental policies through time, which can deviate from expectations due to complex interplays between households and land. This study also suggests that the spatial agent-based model can represent adaptive decision-making and interactions of human agents and their interactions in dynamic social and physical environments.

11.
J Environ Manage ; 277: 111381, 2021 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-33011421

RESUMEN

Ecosystem Services (ESs) are bundles of natural processes and functions that are essential for human well-being, subsistence, and livelihoods. The 'Green Revolution' (GR) has substantial impact on the agricultural landscape and ESs in India. However, the effects of GR on ESs have not been adequately documented and analyzed. This leads to the main hypothesis of this work - 'the incremental trend of ESs in India is mainly prompted by GR led agricultural innovations that took place during 1960 - 1970'. The analysis was carried out through five successive steps. First, the spatiotemporal Ecosystem Service Values (ESVs) in Billion US$ for 1985, 1995, and 2005 were estimated using several value transfer approaches. Second, the sensitivity and elasticity of different ESs to land conversion were carried out using coefficient of sensitivity and coefficient of elasticity. Third, the Geographically Weighted Regression model was performed using five explanatory factors, i.e., total crop area, crop production, crop yield, net irrigated area, and cropping intensity, to explore the cumulative and individual effects of these driving factors on ESVs. Fourth, Multi-Layer Perceptron based Artificial Neural Network was employed to estimate the normalized importance of these explanatory factors. Fifth, simple and multiple linear regression modeling was done to assess the linear associations between the driving factors and the ESs. During the observation periods, cropland, forestland and water bodies contributed to 80%-90% of ESVs, followed by grassland, mangrove, wetland and urban built-up. In all three evaluation years, the highest estimated ESVs among the nine ES categories was provided by water regulation, followed by soil formation and soil-water retention, biodiversity maintenance, waste treatment, climate regulation, and greenhouse gas regulation. Among the five explanatory factors, total crop area, crop production, and net irrigated area showed strong positive associations with ESVs, while cropping intensity exhibited a negative association. Therefore, the study reveals a strong association between GR led agricultural expansion and ESVs in India. This study suggests that there should be an urgent need for formulation of rigorous ecosystem management strategies and policies to preserve ecological integrity and flow of uninterrupted ESs and to sustain human well-being.


Asunto(s)
Conservación de los Recursos Naturales , Ecosistema , Agricultura , Biodiversidad , Humanos , India
12.
Sci Total Environ ; 765: 142723, 2021 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-33077215

RESUMEN

Coronavirus disease, a novel severe acute respiratory syndrome (SARS COVID-19), has become a global health concern due to its unpredictable nature and lack of adequate medicines. Machine Learning (ML) models could be effective in identifying the most critical factors which are responsible for the overall fatalities caused by COVID-19. The functional capabilities of ML models in epidemiological research, especially for COVID-19, are not substantially explored. To bridge this gap, this study has adopted two advanced ML models, viz. Random Forest (RF) and Gradient Boosted Machine (GBM), to perform the regression modelling and provide subsequent interpretation. Five successive steps were followed to carry out the analysis: (1) identification of relevant key explanatory variables; (2) application of data dimensionality reduction for eliminating redundant information; (3) utilizing ML models for measuring relative influence (RI) of the explanatory variables; (4) evaluating interconnections between and among the key explanatory variables and COVID-19 case and death counts; (5) time series analysis for examining the rate of incidences of COVID-19 cases and deaths. Among the explanatory variables considered in this study, air pollution, migration, economy, and demographic factor were found to be the most significant controlling factors. Since a very limited research is available to discuss the superiority of ML models for identifying the key determinants of COVID-19, this study could be a reference for future public health research. Additionally, all the models and data used in this study are open source and freely available, thereby, reproducibility and scientific replication will be achievable easily.


Asunto(s)
COVID-19 , Pandemias , Humanos , Aprendizaje Automático , Reproducibilidad de los Resultados , SARS-CoV-2
13.
Ecosyst Serv ; 452020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32953433

RESUMEN

China's Conversion of Cropland to Forest Program (CCFP) is one of the world's largest Payments for Ecosystem Services (PES) programs. Its socioeconomic-ecological effects are of great interest to both scholars and policy-makers. However, little is known about how the socioeconomic-ecological outcomes of CCFP differ across geographic regions. This study integrates household survey data, satellite imagery, and statistical models to examine labor migration and forest dynamics under CCFP. The investigation is carried out at two mountainous sites with distinct biophysical and socioeconomic conditions, one in a subtropical mountainous region (Anhui) and the other in the semi-arid Loess Plateau (Shanxi). We found divergent CCFP outcomes on migration behavior, stimulating both local- and distant-migration in the Anhui site while discouraging distant-migration in the Shanxi site, after controlling for factors at the individual, household, community and regional levels. Forest recovery is positively associated with distant-migration in Anhui but with local-migration in Shanxi. Contextual factors interact with demographic-socioeconomic factors to influence household livelihoods in both areas, leading to various socio-ecological pathways from CCFP participation to enhanced forest sustainability. Regional differences should therefore be taken into account in the design of future large-scale PES programs.

14.
Sustain Cities Soc ; 62: 102418, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32834939

RESUMEN

The socio-demographic factors have a substantial impact on the overall casualties caused by the Coronavirus (COVID-19). In this study, the global and local spatial association between the key socio-demographic variables and COVID-19 cases and deaths in the European regions were analyzed using the spatial regression models. A total of 31 European countries were selected for modelling and subsequent analysis. From the initial 28 socio-demographic variables, a total of 2 (for COVID-19 cases) and 3 (for COVID-19 deaths) key variables were filtered out for the regression modelling. The spatially explicit regression modelling and mapping were done using four spatial regression models such as Geographically Weighted Regression (GWR), Spatial Error Model (SEM), Spatial Lag Model (SLM), and Ordinary Least Square (OLS). Additionally, Partial Least Square (PLS) and Principal Component Regression (PCR) was performed to estimate the overall explanatory power of the regression models. For the COVID cases, the local R2 values, which suggesting the influences of the selected socio-demographic variables on COVID cases and death, were found highest in Germany, Austria, Slovenia, Switzerland, Italy. The moderate local R2 was observed for Luxembourg, Poland, Denmark, Croatia, Belgium, Slovakia. The lowest local R2 value for COVID-19 cases was accounted for Ireland, Portugal, United Kingdom, Spain, Cyprus, Romania. Among the 2 variables, the highest local R2 was calculated for income (R2 = 0.71), followed by poverty (R2 = 0.45). For the COVID deaths, the highest association was found in Italy, Croatia, Slovenia, Austria. The moderate association was documented for Hungary, Greece, Switzerland, Slovakia, and the lower association was found in the United Kingdom, Ireland, Netherlands, Cyprus. This suggests that the selected demographic and socio-economic components, including total population, poverty, income, are the key factors in regulating overall casualties of COVID-19 in the European region. In this study, the influence of the other controlling factors, such as environmental conditions, socio-ecological status, climatic extremity, etc. have not been considered. This could be the scope for future research.

15.
Integr Environ Assess Manag ; 16(5): 773-787, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32406993

RESUMEN

Demarcation of conservation priority zones (CPZs) using spatially explicit models is the new challenge in ecosystem services (ESs) research. This study identifies the CPZs of the Indian Sundarbans by integrating 2 different approaches, that is, ESs and ecosystem health (EH). Five successive steps were followed to conduct the analysis: First, the ESs were estimated using biophysical and economic methods and a hybrid method (that combines biophysical and economic methods); second, the vigor-organization-resilience (VOR) model was used for estimating EH; third, the risk characterization value (RCV) of ESs was measured using the function of EH and ESs; fourth, Pearson correlation test was performed to analyze the interaction between ESs and EH components; and fifth, the CPZs were defined by considering 7 relevant components: ecosystem vigor, ecosystem organization, ecosystem resilience, RCV, EH, ESs, and the correlation between EH and ESs. Among the major ecoregions of the Sundarbans, the highest ESs value in economic terms is provided by the mangrove ecosystem (US$19 144.9 million per year). The highest conservation priority score was projected for the Gosaba block, which is dominated by dense mangrove forests. The estimated CPZs were found to be highly consistent with the existing biodiversity zonations. The outcome of this study could be a reference for environmentalists, land administrators, researchers, and decision makers to design relevant policies to protect the high values of the Sundarbans ecosystem. Integr Environ Assess Manag 2020;16:773-787. © 2020 SETAC.


Asunto(s)
Conservación de los Recursos Naturales , Ecosistema , Biodiversidad , Humedales
16.
Sci Total Environ ; 725: 138331, 2020 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-32302833

RESUMEN

Remote sensing techniques are effectively used for measuring the overall loss of terrestrial ecosystem productivity and biodiversity due to forest fires. The current research focuses on assessing the impacts of forest fires on terrestrial ecosystem productivity in India during 2003-2017. Spatiotemporal changes of satellite remote sensing derived burn indices were estimated for both fire and normal years to analyze the association between forest fires and ecosystem productivity. Two Light Use Efficiency (LUE) models were used to quantify the terrestrial Net Primary Productivity (NPP) of the forest ecosystem using the open-source and freely available remotely sensed data. A novel approach (delta NPP/delta burn indices) is developed to quantify the effects of forest fires on terrestrial carbon emission and ecosystem production. During 2003-2017, the forest fire intensity was found to be very high (>2000) across the eastern Himalayan hilly region, which is mostly covered by dense forest and thereby highly susceptible to wildfires. Scattered patches of intense forest fires were also detected in the lower Himalayan and central Indian states. The spatial correlation between the burn indices and NPP were mainly negative (-0.01 to -0.89) for the fire-prone states as compared to the other neighbouring regions. Additionally, the linear approximation between the burn indices and NPP showed a positive relation (0.01 to 0.63), suggesting a moderate to high impact of the forest fires on the ecosystem production and terrestrial carbon emission. The present approach has the potential to quantify the loss of ecosystem productivity due to forest fires.

17.
Sci Total Environ ; 715: 137004, 2020 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-32045970

RESUMEN

Most of the Earth's Ecosystem Services (ESs) have experienced a decreasing trend in the last few decades, primarily due to increasing human dominance in the natural environment. Identification and categorization of factors that affect the provision of ESs from global to local scales are challenging. This study makes an effort to identify the key driving factors and examine their effects on different ESs in the Sundarbans region, India. We carry out the analysis following five successive steps: (1) quantifying biophysical and economic values of ESs using three valuation approaches; (2) identifying six major driving forces on ESs; (3) categorizing principal data components with dimensionality reduction; (4) constructing multivariate regression models with variance partitioning; (5) implementing six spatial regression models to examine the causal effects of natural and anthropogenic forcings on ESs. Results show that climatic factors, biophysical factors, and environmental stressors significantly affect the ESs. Among the six driving factors, climate factors are highly associated with the ESs variation and explain the maximum model variances (R2 = 0.75-0.81). Socioeconomic (R2 = 0.44-0.66) and development (R2 = 27-0.44) factors have weak to moderate effects on the ESs. Furthermore, the joint effects of the driving factors are much higher than their individual effects. Among the six spatial regression models, Geographical Weighted Regression (GWR) performs the most accurately and explains the maximum model variances. The proposed hybrid valuation method aggregates biophysical and economic estimates of ESs and addresses methodological biases existing in the valuation process. The presented framework can be generalized and applied to other ecosystems at different scales. The outcome of this study could be a reference for decision-makers, planners, land administrators in formulating a suitable action plan and adopting relevant management practices to improve the overall socio-ecological status of the region.

18.
J Environ Manage ; 244: 208-227, 2019 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-31125872

RESUMEN

Ecosystem Services (ESs) refer to the direct and indirect contributions of ecosystems to human well-being and subsistence. Ecosystem valuation is an approach to assign monetary values to an ecosystem and its key ecosystem goods and services, generally referred to as Ecosystem Service Value (ESV). We have measured spatiotemporal ESV of 17 key ESs of Sundarbans Biosphere Reserve (SBR) in India using temporal remote sensing (RS) data (for years 1973, 1988, 2003, 2013, and 2018). These mangrove ecosystems are crucial for providing valuable supporting, regulatory, provisioning, and cultural ecosystem services. We have adopted supervised machine learning algorithms for classifying the region into different ecosystem units. Among the used machine learning models, Support Vector Machine (SVM) and Random Forest (RF) algorithms performed the most accurate and produced the best classification estimates with maximum kappa and an overall accuracy value. The maximum ESV (derived from both adjusted and non-adjusted units, million US$ year-1) is produced by mangrove forest, followed by the coastal estuary, cropland, inland wetland, mixed vegetation, and finally urban land. Out of all the ESs, the waste treatment (WT) service is the dominant ecosystem service of SBR. Additionally, the mangrove ecosystem was found to be the most sensitive to land use and land cover changes. The synergy and trade-offs between the ESs are closely associated with the spatial extent. Therefore, accurate estimates of ES valuation and mapping can be a robust tool for assessing the effects of poor decision making and overexploitation of natural resources on ESs.


Asunto(s)
Conservación de los Recursos Naturales , Ecosistema , Toma de Decisiones , Humanos , India , Humedales
19.
J Environ Manage ; 223: 115-131, 2018 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-29908397

RESUMEN

Changes in land use due to the industrial revolution, increasing population, ever-increasing desire for economic growth is a global concern. The aforementioned changes can have a significant impact on global and regional ecosystem services which are indispensable for human well-being and their subsistence. This study identifies several approaches (Costanza et al., de Groot et al., and Xie et al.) to estimate the value of global terrestrial ecosystem services. High resolution (300 m) land use products provided by European Space Agency-Climate Change Initiative (ESA-CCI) were used to quantify the global ecosystem service values (ESV) for 1995, 2000, 2005, 2010 and 2015 respectively. The coefficient of elasticity (CE) and coefficient of sensitivity (CS) was calculated to compute the response of ESV's corresponding to land use land cover (LULC) change. The results estimated the mean global ESV's (Trillion US$ year-1) to be 58.97 in 1995 and 57.76 in 2015, indicating a net loss of ESV (1.21 Trillion US$ year-1) during the analysis period (1995-2015) due to depletion of forest cover and wetland/water surface. The overall ESV (Trillion US$ year-1) increased in cropland (4.8 in 1995 to 4.9 in 2015) and urban coverage (0.3 in 1995 to 0.59 in 2015) whereas, it reduced substantially in forests (17.59 in 1995 to 17.42 in 2015), grasslands (9.1 in 1995 to 8.9 in 2015), wetland (22.19 in 1995 to 21.11 in 2015) and water bodies (5.29 in 1995 to 5.27). The forestland, wetland, and water bodies are the highest sensitive eco-regions defined by all valuation methods. The current research provides a way to quantify the overall economic loss or gain due to changes in the past, present, and future land use. This will bridge the gap between economic evaluations of current assets concerning the changes in land use. It will also help planners to provide an in-depth thought to the changes in the overall economic value of a particular land use in future (keeping biodiversity in mind) while validating long-term policies concerning to ecological conservation of a country.


Asunto(s)
Biodiversidad , Conservación de los Recursos Naturales , Ecosistema , Bosques , China , Ecología , Humanos , Humedales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA