Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
PLoS One ; 19(6): e0306100, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38917182

RESUMEN

Making data FAIR-findable, accessible, interoperable, reproducible-has become the recurring theme behind many research data management efforts. dtool is a lightweight data management tool that packages metadata with immutable data to promote accessibility, interoperability, and reproducibility. Each dataset is self-contained and does not require metadata to be stored in a centralised system. This decentralised approach means that finding datasets can be difficult. dtool's lookup server, short dserver, as defined by a REST API, makes dtool datasets findable, hence rendering the dtool ecosystem fit for a FAIR data management world. Its simplicity, modularity, accessibility and standardisation via API distinguish dtool and dserver from other solutions and enable it to serve as a common denominator for cross-disciplinary research data management. The dtool ecosystem bridges the gap between standardisation-free data management by individuals and FAIR platform solutions with rigid metadata requirements.


Asunto(s)
Programas Informáticos , Manejo de Datos/métodos , Metadatos , Ecosistema , Reproducibilidad de los Resultados , Internet
2.
Sci Adv ; 10(10): eadl1277, 2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38446897

RESUMEN

Soft solids are sticky. They attract each other and spontaneously form a large area of contact. Their force of attraction is higher when separating than when forming contact, a phenomenon known as adhesion hysteresis. The common explanation for this hysteresis is viscoelastic energy dissipation or contact aging. Here, we use experiments and simulations to show that it emerges even for perfectly elastic solids. Pinning by surface roughness triggers the stick-slip motion of the contact line, dissipating energy. We derive a simple and general parameter-free equation that quantitatively describes contact formation in the presence of roughness. Our results highlight the crucial role of surface roughness and present a fundamental shift in our understanding of soft adhesion.

3.
Clin Neuroradiol ; 34(1): 85-91, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37640838

RESUMEN

PURPOSE: The aim of this study was to evaluate the image quality and feasibility of a field map-based technique to correct for susceptibility-induced geometric distortions which are typical for diffusion EPI brain imaging. METHODS: We prospectively included 52 patients during clinical routine in this single-center study. All scans were performed on a 3T MRI. Patients' indications for MRI mainly consisted of suspected stroke due to the clinical presentation. For the morphological comparison of the corrected and uncorrected EPI diffusion, three experienced radiologists assessed the image quality of the sequences in a blinded and randomized fashion using a Likert scale (1 being poor; 5 being excellent). To ensure comparability of the two methods, an additional quantitative analysis of the apparent diffusion coefficient (ADC) was performed. RESULTS: Corrected EPI diffusion was rated significantly superior in all the selected categories: overall level of artifacts (p < 0.001), degree of distortion at the frontal, temporal, occipital and brainstem levels (p < 0.001), conspicuousness of ischemic lesions (p < 0.001), image quality (p < 0.001), naturality (p < 0.001), contrast (p < 0.001), and diagnostic confidence (p < 0.001). CONCLUSION: Corrected EPI diffusion offers a significant reduction of geometric distortion in all evaluated brain regions and an improved conspicuousness of ischemic lesions. Image quality, overall artifacts, naturality, contrast and diagnostic confidence were also rated superior in comparison to uncorrected EPI diffusion.


Asunto(s)
Artefactos , Imagen Eco-Planar , Humanos , Estudios Prospectivos , Sensibilidad y Especificidad , Imagen Eco-Planar/métodos , Reproducibilidad de los Resultados , Imagen por Resonancia Magnética , Imagen de Difusión por Resonancia Magnética/métodos , Neuroimagen , Encéfalo/diagnóstico por imagen
4.
Clin Neuroradiol ; 34(1): 189-199, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37831106

RESUMEN

OBJECTIVE: To evaluate diagnostic image quality of ultra-high-resolution computed tomography angiography (UHR-CTA) in neurovascular imaging as compared to normal resolution CT-angiography (NR-CTA). MATERIAL AND METHODS: In this retrospective single-center study brain and neck CT-angiography was performed using an ultra-high-resolution computed tomography scanner (n = 82) or a normal resolution CT scanner (NR-CTA; n = 73). Ultra-high-resolution images were reconstructed with a 1024â€¯× 1024 matrix and a slice thickness of 0.25 mm, whereas NR-CT images were reconstructed with a 512â€¯× 512 matrix and a slice thickness of 0.5 mm. Three blinded neuroradiologists assessed overall image quality, artifacts, image noise, overall contrast and diagnostic confidence using a 4-point Likert scale. Furthermore, the visualization and delineation of supra-aortic arteries with an emphasis on the visualization of small intracerebral vessels was assessed using a cerebral vascular score, also utilizing a 4-point Likert scale. Quantitative analyses included signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), noise and the steepness of gray value transition. Radiation exposure was determined by comparison of computed tomography dose index (CTDIvol), dose length product (DLP) and mean effective dose. Interrater agreement was evaluated via determining Fleiss-Kappa. RESULTS: Ultra-high-resolution CT-angiography (UHR-CTA) yielded excellent image quality with superior quantitative (SNR: p < 0.001, CNR: p < 0.001, steepness of gray value transition: p < 0.001) and qualitative results (overall image quality: 4 (Inter quartile range (IQR) = 4-4); p < 0.001, diagnostic confidence: 4 (IQR = 4-4); p < 0.001) compared to NR-CT (overall image quality: 3 (IQR = 3-3), diagnostic confidence: 3 (IQR = 3-4)). Furthermore, UHR-CT enabled significantly superior delineation and visualization of all vascular segments, from proximal extracranial vessels to the smallest peripheral cerebral branches (e.g. , UHR-CTA PICA: 4 (3-4) vs. NR-CTA PICA: 3 (2-3); UHR-CTA P4: 4 (IQR = 3-4) vs. NR-CTA P4: 2 (IQR = 2-3); UHR-CTA M4: 4 (IQR = 4-4) vs. NR-CTA M4: 3 (IQR = 2-3); UHR-CTA A4: 4 (IQR = 3-4) vs. NR-CTA A4: 2 (IQR = 2-3); all p < 0.001). Noteworthy, a reduced mean effective dose was observed when applying UHR-CT (NR-CTA: 1.8 ± 0.3 mSv; UHR-CTA: 1.5 ± 0.5 mSv; p < 0.001). CONCLUSION: Ultra-high-resolution CT-angiography improves image quality in neurovascular imaging allowing the depiction and evaluation of small peripheral cerebral arteries. It may thus improve the detection of pathologies in small cerebrovascular lesions and the resulting diagnosis.


Asunto(s)
Angiografía por Tomografía Computarizada , Tomografía Computarizada por Rayos X , Humanos , Angiografía por Tomografía Computarizada/métodos , Estudios Retrospectivos , Tomografía Computarizada por Rayos X/métodos , Angiografía , Relación Señal-Ruido , Dosis de Radiación , Interpretación de Imagen Radiográfica Asistida por Computador/métodos
5.
Acad Radiol ; 31(4): 1594-1604, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37821348

RESUMEN

RATIONALE AND OBJECTIVES: Ruptured intracranial aneurysms (IAs) are the leading cause for atraumatic subarachnoid hemorrhage. In case of aneurysm rupture, patients may face life-threatening complications and require aneurysm occlusion. Detection of the aneurysm in computed tomography (CT) imaging is therefore essential for patient outcome. This study provides an evaluation of the diagnostic accuracy of Ultra-High-Resolution Computed Tomography Angiography (UHR-CTA) and Normal-Resolution Computed Tomography Angiography (NR-CTA) concerning IA detection and characterization. MATERIALS AND METHODS: Consecutive patients with atraumatic subarachnoid hemorrhage who received Digital Subtraction Angiography (DSA) and either UHR-CTA or NR-CTA were retrospectively included. Three readers evaluated CT-Angiography regarding image quality, diagnostic confidence and presence of IAs. Sensitivity and specificity were calculated on patient-level and segment-level with reference standard DSA-imaging. CTA patient radiation exposure (effective dose) was compared. RESULTS: One hundred and eight patients were identified (mean age = 57.8 ±â€¯14.1 years, 65 women). UHR-CTA revealed significantly higher image quality and diagnostic confidence (P < 0.001) for all readers and significantly lower effective dose (P < 0.001). Readers correctly classified ≥55/56 patients on UHR-CTA and ≥44/52 patients on NR-CTA. We noted significantly higher patient-level sensitivity for UHR-CTA compared to NR-CTA for all three readers (reader 1: 41/41 [100%] vs. 28/34 [82%], reader 2: 41/41 [100%] vs. 30/34 [88%], reader 3: 41/41 [100%] vs. 30/34 [88%], P ≤ 0.04). Segment-level analysis also revealed significantly higher sensitivity for UHR-CTA compared to NR-CTA for all three readers (reader 1: 47/49 [96%] vs. 34/45 [76%], reader 2: 47/49 [96%] vs. 37/45 [82%], reader 3: 48/49 [98%] vs. 37/45 [82%], P ≤ 0.04). Specificity was comparable for both techniques. CONCLUSION: We found Ultra-High-Resolution CT-Angiography to provide higher sensitivity than Normal-Resolution CT-Angiography for the detection of intracranial aneurysms in patients with aneurysmal subarachnoid hemorrhage while improving image quality and reducing patient radiation exposure.


Asunto(s)
Aneurisma Roto , Aneurisma Intracraneal , Hemorragia Subaracnoidea , Humanos , Femenino , Adulto , Persona de Mediana Edad , Anciano , Hemorragia Subaracnoidea/diagnóstico por imagen , Hemorragia Subaracnoidea/complicaciones , Aneurisma Intracraneal/complicaciones , Aneurisma Intracraneal/diagnóstico por imagen , Angiografía por Tomografía Computarizada/métodos , Estudios Retrospectivos , Angiografía Cerebral/métodos , Tomografía Computarizada por Rayos X/métodos , Angiografía de Substracción Digital/métodos , Sensibilidad y Especificidad , Aneurisma Roto/complicaciones , Aneurisma Roto/diagnóstico por imagen
6.
Mod Pathol ; 36(12): 100327, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37683932

RESUMEN

Digital pathology adoption allows for applying computational algorithms to routine pathology tasks. Our study aimed to develop a clinical-grade artificial intelligence (AI) tool for precise multiclass tissue segmentation in colorectal specimens (resections and biopsies) and clinically validate the tool for tumor detection in biopsy specimens. The training data set included 241 precisely manually annotated whole-slide images (WSIs) from multiple institutions. The algorithm was trained for semantic segmentation of 11 tissue classes with an additional module for biopsy WSI classification. Six case cohorts from 5 pathology departments (4 countries) were used for formal and clinical validation, digitized by 4 different scanning systems. The developed algorithm showed high precision of segmentation of different tissue classes in colorectal specimens with composite multiclass Dice score of up to 0.895 and pixel-wise tumor detection specificity and sensitivity of up to 0.958 and 0.987, respectively. In the clinical validation study on multiple external cohorts, the AI tool reached sensitivity of 1.0 and specificity of up to 0.969 for tumor detection in biopsy WSI. The AI tool analyzes most biopsy cases in less than 1 minute, allowing effective integration into clinical routine. We developed and extensively validated a highly accurate, clinical-grade tool for assistive diagnostic processing of colorectal specimens. This tool allows for quantitative deciphering of colorectal cancer tissue for development of prognostic and predictive biomarkers and personalization of oncologic care. This study is a foundation for a SemiCOL computational challenge. We open-source multiple manually annotated and weakly labeled test data sets, representing a significant contribution to the colorectal cancer computational pathology field.


Asunto(s)
Inteligencia Artificial , Neoplasias Colorrectales , Humanos , Algoritmos , Biopsia , Oncología Médica , Radiofármacos , Neoplasias Colorrectales/diagnóstico
7.
Heliyon ; 9(4): e15064, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37096006

RESUMEN

Rationale and objectives: To prospectively evaluate feasibility and robustness of an accelerated T2 mapping sequence (GRAPPATINI) in brain imaging and to assess its synthetic T2-weighted images (sT2w) in comparison with a standard T2-weighted sequence (T2 TSE). Material and methods: Volunteers were included to evaluate the robustness and consecutive patients for morphological evaluation. They were scanned on a 3 T MR-scanner. Healthy volunteers underwent GRAPPATINI of the brain three times (day 1: scan/rescan; day 2: follow-up). Patients between the ages of 18 and 85 years who were able to provide written informed consent and who had no MRI contraindications were included. For morphological comparison two radiologists with 5 and 7 years of experience in brain MRI evaluated image quality using a Likert scale (1 being poor, 4 being excellent) in a blinded and randomized fashion. Results: Images were successfully acquired in ten volunteers with a mean age of 25 years (ranging from 22 to 31 years) and 52 patients (23 men/29 women) with a mean age of 55 years (range of 22-83 years). Most brain regions showed repeatable and reproducible T2 values (rescan: CoV 0.75%-2.06%, ICC 69%-92.3%; follow-up: CoV 0.41%-1.59%, ICC 79.4%-95.8%), except for the caudate nucleus (rescan: CoV 7.25%, ICC 66.3%; follow-up: CoV 4.78%, ICC 80.9%). Image quality of sT2w was rated inferior to T2 TSE (median for T2 TSE: 3; sT2w: 1-2), but measurements revealed good interrater reliability of sT2w (lesion counting: ICC 0.85; diameter measure: ICC 0.68 and 0.67). Conclusion: GRAPPATINI is a feasible and robust T2 mapping sequence of the brain on intra- and intersubject level. The resulting sT2w depict brain lesions comparable to T2 TSE despite its inferior image quality.

9.
Diagnostics (Basel) ; 13(4)2023 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-36832109

RESUMEN

PURPOSE: To evaluate the effects of single-energy metal artifact reduction (SEMAR) on image quality of ultra-high-resolution CT-angiography (UHR-CTA) with intracranial implants after aneurysm treatment. METHODS: Image quality of standard and SEMAR-reconstructed UHR-CT-angiography images of 54 patients who underwent coiling or clipping was retrospectively evaluated. Image noise (i.e., index for metal-artifact strength) was analyzed in close proximity to and more distally from the metal implant. Frequencies and intensities of metal artifacts were additionally measured and intensity-differences between both reconstructions were compared in different frequencies and distances. Qualitative analysis was performed by two radiologists using a four-point Likert-scale. All measured results from both quantitative and qualitative analysis were then compared between coils and clips. RESULTS: Metal artifact index (MAI) and the intensity of coil-artifacts were significantly lower in SEMAR than in standard CTA in close vicinity to and more distally from the coil-package (p < 0.001, each). MAI and the intensity of clip-artifacts were significantly lower in close vicinity (p = 0.036; p < 0.001, respectively) and more distally from the clip (p = 0.007; p < 0.001, respectively). In patients with coils, SEMAR was significantly superior in all qualitative categories to standard images (p < 0.001), whereas in patients with clips, only artifacts were significantly less (p < 0.05) for SEMAR. CONCLUSION: SEMAR significantly reduces metal artifacts in UHR-CT-angiography images with intracranial implants and improves image quality and diagnostic confidence. SEMAR effects were strongest in patients with coils, whereas the effects were minor in patients with titanium-clips due to the absent of or minimal artifacts.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA