RESUMEN
Long-term social aggregations are maintained by multiple mechanisms, including the use of acoustic signals, which may nonetheless entail significant energetic costs. To date, however, no studies have gauged whether there are significant energetic costs to social call production in bats, which heavily rely on acoustic communication for a diversity of social tasks. We measured energetic expenditure during acoustic signaling in Spix's disc-winged bats (Thyroptera tricolor), a species that commonly uses contact calls to locate the ephemeral furled leaves that they use for roosting. To determine the cost of sound production, we measured oxygen consumption using intermittent-flow respirometry methods, with and without social signaling. Our results show that the emission of contact calls significantly increases oxygen consumption; vocal individuals spent, on average, 12.42 kJ more during social signaling trials than they spent during silent trials. We also found that as resting metabolic rate increased in males, there was a decreasing probability that they would emit response calls. These results provide support to the 'allocation model', which predicts that only individuals with lower self-maintenance costs can afford to spend energy in additional activities. Our results provide a step forward in our understanding of how physiology modulates behavior, specifically how the costs of call production and resting metabolic rate may explain the differences in vocal behavior among individuals.
Asunto(s)
Quirópteros , Acústica , Comunicación Animal , Animales , Humanos , MasculinoRESUMEN
Biomarkers are frequently used in ecotoxicology as they allow to study toxicant effects happening at low concentrations of exposure. However, most sublethal studies only evaluate cellular biomarkers which lack evident ecological relevance. We used a multibiomarker approach to estimate the toxic effects of ethoprophos, an organophosphate insecticide commonly used in banana plantations, on the tropical fish Astyanax aeneus (Characidae). We measured biomarkers at sub-individual (cellular) and individual (metabolism, behavior) levels and examined relationships among these responses. A sublethal exposure to ethoprophos caused a significant (54%) reduction of brain Cholinesterase (ChE) activity, reflecting the pesticide's high neurotoxicity. However, other biomarkers like oxidative stress, biotransformation reactions, and resting metabolic rate were not affected. Exposure to ethoprophos modified antipredator behaviors such as escape response and detection avoidance (light/dark preference): exposed fish escaped slower from a simulated attack and preferred brighter areas in a novel tank. The relationship between ChE activity and reaction time suggests that pesticide-induced ChE inhibition reduces escape ability in fish. Our results provide evidence that impacts of organophosphate pesticides on fish ecological fitness can occur even with short exposures at very low concentrations.