Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
1.
Biochemistry ; 63(18): 2310-2322, 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39194960

RESUMEN

HYPOTHESIS: In this communication, we test the hypothesis that sulfotransferase 1C2 (SULT1C2, UniProt accession no. Q9WUW8) can modulate mitochondrial respiration by increasing state-III respiration. METHODS AND RESULTS: Using freshly isolated mitochondria, the addition of SULT1C2 and 3-phosphoadenosine 5 phosphosulfate (PAPS) results in an increased maximal respiratory capacity in response to the addition of succinate, ADP, and rotenone. Lipidomics and thin-layer chromatography of mitochondria treated with SULT1C2 and PAPS showed an increase in the level of cholesterol sulfate. Notably, adding cholesterol sulfate at nanomolar concentration to freshly isolated mitochondria also increases maximal respiratory capacity. In vivo studies utilizing gene delivery of SULT1C2 expression plasmids to kidneys result in increased mitochondrial membrane potential and confer resistance to ischemia/reperfusion injury. Mitochondria isolated from gene-transduced kidneys have elevated state-III respiration as compared with controls, thereby recapitulating results obtained with mitochondrial fractions treated with SULT1C2 and PAPS. CONCLUSION: SULT1C2 increases mitochondrial respiratory capacity by modifying cholesterol, resulting in increased membrane potential and maximal respiratory capacity. This finding uncovers a unique role of SULT1C2 in cellular physiology and extends the role of sulfotransferases in modulating cellular metabolism.


Asunto(s)
Ésteres del Colesterol , Colesterol , Mitocondrias , Membranas Mitocondriales , Sulfotransferasas , Animales , Colesterol/metabolismo , Sulfotransferasas/metabolismo , Sulfotransferasas/genética , Mitocondrias/metabolismo , Ésteres del Colesterol/metabolismo , Membranas Mitocondriales/metabolismo , Ratones , Respiración de la Célula/fisiología , Respiración de la Célula/efectos de los fármacos , Masculino , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Riñón/metabolismo , Ratones Endogámicos C57BL
2.
Am J Physiol Renal Physiol ; 327(1): F103-F112, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38779750

RESUMEN

α-1-Microglobulin (A1M) is a circulating glycoprotein with antioxidant, heme-binding, and mitochondrial protection properties. The investigational drug RMC-035, a modified therapeutic A1M protein, was assessed for biodistribution and pharmacological activity in a broad set of in vitro and in vivo experiments, supporting its clinical development. Efficacy and treatment posology were assessed in various models of kidney ischemia and reperfusion injury (IRI). Real-time glomerular filtration rate (GFR), functional renal biomarkers, tubular injury biomarkers (NGAL and KIM-1), and histopathology were evaluated. Fluorescently labeled RMC-035 was used to assess biodistribution. RMC-035 demonstrated consistent and reproducible kidney protection in rat IRI models as well as in a model of IRI imposed on renal impairment and in a mouse IRI model, where it reduced mortality. Its pharmacological activity was most pronounced with combined dosing pre- and post-ischemia and weaker with either pre- or post-ischemia dosing alone. RMC-035 rapidly distributed to the kidneys via glomerular filtration and selective luminal uptake by proximal tubular cells. IRI-induced expression of kidney heme oxygenase-1 was inhibited by RMC-035, consistent with its antioxidative properties. RMC-035 also dampened IRI-associated inflammation and improved mitochondrial function, as shown by tubular autofluorescence. Taken together, the efficacy of RMC-035 is congruent with its targeted mechanism(s) and biodistribution profile, supporting its further clinical evaluation as a novel kidney-protective therapy.NEW & NOTEWORTHY A therapeutic A1M protein variant (RMC-035) is currently in phase 2 clinical development for renal protection in patients undergoing open-chest cardiac surgery. It targets several key pathways underlying kidney injury in this patient group, including oxidative stress, heme toxicity, and mitochondrial dysfunction. RMC-035 is rapidly eliminated from plasma, distributing to kidney proximal tubules, and demonstrates dose-dependent efficacy in numerous models of ischemia-reperfusion injury, particularly when administered before ischemia. These results support its continued clinical evaluation.


Asunto(s)
alfa-Globulinas , Riñón , Daño por Reperfusión , Animales , Daño por Reperfusión/patología , Daño por Reperfusión/metabolismo , Daño por Reperfusión/prevención & control , Daño por Reperfusión/tratamiento farmacológico , alfa-Globulinas/metabolismo , alfa-Globulinas/farmacología , Masculino , Riñón/efectos de los fármacos , Riñón/patología , Riñón/metabolismo , Modelos Animales de Enfermedad , Tasa de Filtración Glomerular/efectos de los fármacos , Ratones Endogámicos C57BL , Humanos , Ratones , Hemo-Oxigenasa 1/metabolismo , Ratas , Ratas Sprague-Dawley , Lesión Renal Aguda/patología , Lesión Renal Aguda/metabolismo , Lesión Renal Aguda/tratamiento farmacológico , Lesión Renal Aguda/prevención & control , Distribución Tisular
3.
bioRxiv ; 2024 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-38798535

RESUMEN

Background: Pharmacological inhibition of megalin (also known as low-density lipoprotein receptor-related protein 2: LRP2) attenuates atherosclerosis in hypercholesterolemic mice. Since megalin is abundant in renal proximal tubule cells (PTCs), the purpose of this study was to determine whether PTC-specific deletion of megalin reduces hypercholesterolemia-induced atherosclerosis in mice. Methods: Female Lrp2 f/f mice were bred with male Ndrg1-Cre ERT2 +/0 mice to develop PTC-LRP2 +/+ and -/- littermates. To study atherosclerosis, all mice were to bred to an LDL receptor -/- background and fed a Western diet to induce atherosclerosis. Results: PTC-specific megalin deletion did not attenuate atherosclerosis in LDL receptor -/- mice in either sex. Serendipitously, we discovered that PTC-specific megalin deletion led to interstitial infiltration of CD68+ cells and tubular atrophy. The pathology was only evident in male PTC-LRP2 -/- mice fed the Western diet, but not in mice fed a normal laboratory diet. Renal pathologies were also observed in male PTC-LRP2 -/- mice in an LDL receptor +/+ background fed the same Western diet, demonstrating that the renal pathologies were dependent on diet and not hypercholesterolemia. By contrast, female PTC-LRP2 -/- mice had no apparent renal pathologies. In vivo multiphoton microscopy demonstrated that PTC-specific megalin deletion dramatically diminished albumin accumulation in PTCs within 10 days of Western diet feeding. RNA sequencing analyses demonstrated the upregulation of inflammation-related pathways in kidney. Conclusions: PTC-specific megalin deletion does not affect atherosclerosis, but leads to tubulointerstitial nephritis in mice fed Western diet, with severe pathologies in male mice.

6.
Mol Pharm ; 20(2): 987-996, 2023 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-36626167

RESUMEN

Despite the understanding that renal clearance is pivotal for driving the pharmacokinetics of numerous therapeutic proteins and peptides, the specific processes that occur following glomerular filtration remain poorly defined. For instance, sites of catabolism within the proximal tubule can occur at the brush border, within lysosomes following endocytosis, or even within the tubule lumen itself. The objective of the current study was to address these limitations and develop methodology to study the kidney disposition of a model therapeutic protein. Exenatide is a peptide used to treat type 2 diabetes mellitus. Glomerular filtration and ensuing renal catabolism have been shown to be its principal clearance pathway. Here, we designed and validated a Förster resonance energy transfer-quenched exenatide derivative to provide critical information on the renal handling of exenatide. A combination of in vitro techniques was used to confirm substantial fluorescence quenching of intact peptide that was released upon proteolytic cleavage. This evaluation was then followed by an assessment of the in vivo disposition of quenched exenatide directly within kidneys of living rats via intravital two-photon microscopy. Live imaging demonstrated rapid glomerular filtration and identified exenatide metabolism occurred within the subapical regions of the proximal tubule epithelia, with subsequent intracellular trafficking of cleaved fragments. These results provide a novel examination into the real-time, intravital disposition of a protein therapeutic within the kidney and offer a platform to build upon for future work.


Asunto(s)
Diabetes Mellitus Tipo 2 , Exenatida , Riñón , Animales , Ratas , Diabetes Mellitus Tipo 2/metabolismo , Exenatida/metabolismo , Exenatida/farmacocinética , Riñón/metabolismo , Túbulos Renales Proximales/metabolismo , Péptidos/metabolismo
7.
Drug Metab Dispos ; 51(3): 403-412, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36460476

RESUMEN

Bifunctional antibody (BfAb) therapeutics offer the potential for novel functionalities beyond those of the individual monospecific entities. However, combining these entities into a single molecule can have unpredictable effects, including changes in pharmacokinetics that limit the compound's therapeutic profile. A better understanding of how molecular modifications affect in vivo tissue interactions could help inform BfAb design. The present studies were predicated on the observation that a BfAb designed to have minimal off-target interactions cleared from the circulation twice as fast as the monoclonal antibody (mAb) from which it was derived. The present study leverages the spatial and temporal resolution of intravital microscopy (IVM) to identify cellular interactions that may explain the different pharmacokinetics of the two compounds. Disposition studies of mice demonstrated that radiolabeled compounds distributed similarly over the first 24 hours, except that BfAb accumulated approximately two- to -three times more than mAb in the liver. IVM studies of mice demonstrated that both distributed to endosomes of liver endothelia but with different kinetics. Whereas mAb accumulated rapidly within the first hour of administration, BfAb accumulated only modestly during the first hour but continued to accumulate over 24 hours, ultimately reaching levels similar to those of the mAb. Although neither compound was freely filtered by the mouse or rat kidney, BfAb, but not mAb, was found to accumulate over 24 hours in endosomes of proximal tubule cells. These studies demonstrate how IVM can be used as a tool in drug design, revealing unpredicted cellular interactions that are undetectable by conventional analyses. SIGNIFICANCE STATEMENT: Bifunctional antibodies offer novel therapeutic functionalities beyond those of the individual monospecific entities. However, combining these entities into a single molecule can have unpredictable effects, including undesirable changes in pharmacokinetics. Studies of the dynamic distribution of a bifunctional antibody and its parent monoclonal antibody presented here demonstrate how intravital microscopy can expand our understanding of the in vivo disposition of therapeutics, detecting off-target interactions that could not be detected by conventional pharmacokinetics approaches or predicted by conventional physicochemical analyses.


Asunto(s)
Anticuerpos Monoclonales , Hígado , Ratas , Ratones , Animales , Distribución Tisular , Anticuerpos Monoclonales/farmacocinética , Hígado/metabolismo , Riñón
8.
Front Med (Lausanne) ; 9: 931293, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35966871

RESUMEN

Adenosine triphosphate (ATP) released from injured or dying cells is a potent pro-inflammatory "danger" signal. Alkaline phosphatase (AP), an endogenous enzyme that de-phosphorylates extracellular ATP, likely plays an anti-inflammatory role in immune responses. We hypothesized that ilofotase alfa, a human recombinant AP, protects kidneys from ischemia-reperfusion injury (IRI), a model of acute kidney injury (AKI), by metabolizing extracellular ATP to adenosine, which is known to activate adenosine receptors. Ilofotase alfa (iv) with or without ZM241,385 (sc), a selective adenosine A2A receptor (A2AR) antagonist, was administered 1 h before bilateral IRI in WT, A2AR KO (Adora2a-/- ) or CD73-/- mice. In additional studies recombinant alkaline phosphatase was given after IRI. In an AKI-on-chronic kidney disease (CKD) ischemic rat model, ilofotase alfa was given after the three instances of IRI and rats were followed for 56 days. Ilofotase alfa in a dose dependent manner decreased IRI in WT mice, an effect prevented by ZM241,385 and partially prevented in Adora2a-/- mice. Enzymatically inactive ilofotase alfa was not protective. Ilofotase alfa rescued CD73-/- mice, which lack a 5'-ectonucleotidase that dephosphorylates AMP to adenosine; ZM241,385 inhibited that protection. In both rats and mice ilofotase alfa ameliorated IRI when administered after injury, thus providing relevance for therapeutic dosing of ilofotase alfa following established AKI. In an AKI-on-CKD ischemic rat model, ilofotase alfa given after the third instance of IRI reduced injury. These results suggest that ilofotase alfa promotes production of adenosine from liberated ATP in injured kidney tissue, thereby amplifying endogenous mechanisms that can reverse tissue injury, in part through A2AR-and non-A2AR-dependent signaling pathways.

9.
Physiol Rev ; 102(4): 1625-1667, 2022 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-35378997

RESUMEN

For nearly 50 years the proximal tubule (PT) has been known to reabsorb, process, and either catabolize or transcytose albumin from the glomerular filtrate. Innovative techniques and approaches have provided insights into these processes. Several genetic diseases, nonselective PT cell defects, chronic kidney disease (CKD), and acute PT injury lead to significant albuminuria, reaching nephrotic range. Albumin is also known to stimulate PT injury cascades. Thus, the mechanisms of albumin reabsorption, catabolism, and transcytosis are being reexamined with the use of techniques that allow for novel molecular and cellular discoveries. Megalin, a scavenger receptor, cubilin, amnionless, and Dab2 form a nonselective multireceptor complex that mediates albumin binding and uptake and directs proteins for lysosomal degradation after endocytosis. Albumin transcytosis is mediated by a pH-dependent binding affinity to the neonatal Fc receptor (FcRn) in the endosomal compartments. This reclamation pathway rescues albumin from urinary losses and cellular catabolism, extending its serum half-life. Albumin that has been altered by oxidation, glycation, or carbamylation or because of other bound ligands that do not bind to FcRn traffics to the lysosome. This molecular sorting mechanism reclaims physiological albumin and eliminates potentially toxic albumin. The clinical importance of PT albumin metabolism has also increased as albumin is now being used to bind therapeutic agents to extend their half-life and minimize filtration and kidney injury. The purpose of this review is to update and integrate evolving information regarding the reabsorption and processing of albumin by proximal tubule cells including discussion of genetic disorders and therapeutic considerations.


Asunto(s)
Albúminas , Túbulos Renales Proximales , Albúminas/metabolismo , Transporte Biológico , Endocitosis/fisiología , Humanos , Túbulos Renales Proximales/metabolismo
10.
Front Physiol ; 13: 827280, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35399274

RESUMEN

Intravital multiphoton microscopy has empowered investigators to study dynamic cell and subcellular processes in vivo within normal and disease organs. Advances in hardware, software, optics, transgenics and fluorescent probe design and development have enabled new quantitative approaches to create a disruptive technology pioneering advances in understanding of normal biology, disease pathophysiology and therapies. Offering superior spatial and temporal resolution with high sensitivity, investigators can follow multiple processes simultaneously and observe complex interactions between different cell types, intracellular organelles, proteins and track molecules for cellular uptake, intracellular trafficking, and metabolism in a cell specific fashion. The technique has been utilized in the kidney to quantify multiple dynamic processes including capillary flow, permeability, glomerular function, proximal tubule processes and determine the effects of diseases and therapeutic mechanisms. Limitations include the depth of tissue penetration with loss of sensitivity and resolution due to scattered emitted light. Tissue clearing technology has virtually eliminated penetration issues for fixed tissue studies. Use of multiphoton microscopy in preclinical animal models offers distinct advantages resulting in new insights into physiologic processes and the pathophysiology and treatment of diseases.

11.
J Vis Exp ; (181)2022 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-35311826

RESUMEN

Applying novel microscopy methods to suitable animal disease models to explore the dynamic physiology of the kidney remains a challenge. Rats with surface glomeruli provide a unique opportunity to investigate physiological and pathophysiological processes using intravital 2-photon microscopy. Quantification of glomerular capillary blood flow and vasoconstriction and dilatation in response to drugs, permeability, and inflammation are just some of the processes that can be studied. In addition, transgenic rats, i.e., podocytes labeled with fluorescent dyes and other molecular biomarker approaches, provide increased resolution to directly monitor and quantify protein-protein interactions and the effects of specific molecular alterations. In mice, which lack surface glomeruli after four weeks of age, unilateral ureteral obstruction (UUO) for several weeks has been used to induce surface glomeruli. As this induction model does not allow for baseline studies, we quantified the effects of UUO on glomerular processes in the UUO model in Munich Wistar Frömter (MWF) rats, which have surface glomeruli under physiologic conditions. The UUO model for five weeks or more induced significant alterations to gross renal morphology, the peritubular and glomerular microvasculature, as well as the structure and function of tubular epithelia. Glomerular and peritubular red blood cell (RBC) flow decreased significantly (p < 0.01), probably due to the significant increase in the adherence of white blood cells (WBCs) within glomerular and peritubular capillaries. The glomerular sieving coefficient of albumin increased from 0.015 ± 0.002 in untreated MWFs to 0.045 ± 0.05 in 5-week-old UUO MWF rats. Twelve weeks of UUO resulted in further increases in surface glomerular density and glomerular sieving coefficient (GSC) for albumin. Fluorescent albumin filtered across the glomeruli was not reabsorbed by the proximal tubules. These data suggest that using UUO to induce surface glomeruli limits the ability to study and interpret normal glomerular processes and disease alterations.


Asunto(s)
Obstrucción Ureteral , Animales , Tasa de Filtración Glomerular , Riñón/metabolismo , Glomérulos Renales/metabolismo , Ratones , Microscopía , Ratas , Ratas Wistar
12.
Microsyst Nanoeng ; 8: 14, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35136653

RESUMEN

As 3D in vitro tissue models become more pervasive, their built-in nutrient, metabolite, compound, and waste gradients increase biological relevance at the cost of analysis simplicity. Investigating these gradients and the resulting metabolic heterogeneity requires invasive and time-consuming methods. An alternative is using electrochemical biosensors and measuring concentrations around the tissue model to obtain size-dependent metabolism data. With our hanging-drop-integrated enzymatic glucose biosensors, we conducted current measurements within hanging-drop compartments hosting spheroids formed from the human colorectal carcinoma cell line HCT116. We developed a physics-based mathematical model of analyte consumption and transport, considering (1) diffusion and enzymatic conversion of glucose to form hydrogen peroxide (H2O2) by the glucose-oxidase-based hydrogel functionalization of our biosensors at the microscale; (2) H2O2 oxidation at the electrode surface, leading to amperometric H2O2 readout; (3) glucose diffusion and glucose consumption by cancer cells in a spherical tissue model at the microscale; (4) glucose and H2O2 transport in our hanging-drop compartments at the macroscale; and (5) solvent evaporation, leading to glucose and H2O2 upconcentration. Our model relates the measured currents to the glucose concentrations generating the currents. The low limit of detection of our biosensors (0.4 ± 0.1 µM), combined with our current-fitting method, enabled us to reveal glucose dynamics within our system. By measuring glucose dynamics in hanging-drop compartments populated by cancer spheroids of various sizes, we could infer glucose distributions within the spheroid, which will help translate in vitro 3D tissue model results to in vivo.

13.
Am J Physiol Renal Physiol ; 320(1): F114-F129, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-33283642

RESUMEN

Chronic kidney disease results in high serum urea concentrations leading to excessive protein carbamylation, primarily albumin. This is associated with increased cardiovascular disease and mortality. Multiple methods were used to address whether carbamylation alters albumin metabolism. Intravital two-photon imaging of the Munich Wistar Frömter (MWF) rat kidney and liver allowed us to characterize filtration and proximal tubule uptake and liver uptake. Microscale thermophoresis enabled quantification of cubilin (CUB7,8 domain) and FcRn binding. Finally, multiple biophysical methods including dynamic light scattering, small-angle X-ray scattering, LC-MS/MS and in silico analyses were used to identify the critical structural alterations and amino acid modifications of rat albumin. Carbamylation of albumin reduced binding to CUB7,8 and FcRn in a dose-dependent fashion. Carbamylation markedly increased vascular clearance of carbamylated rat serum albumin (cRSA) and altered distribution of cRSA in both the kidney and liver at 16 h post intravenous injection. By evaluating the time course of carbamylation and associated charge, size, shape, and binding parameters in combination with in silico analysis and mass spectrometry, the critical binding interaction impacting carbamylated albumin's reduced FcRn binding was identified as K524. Carbamylation of RSA had no effect on glomerular filtration or proximal tubule uptake. These data indicate urea-mediated time-dependent carbamylation of albumin lysine K524 resulted in reduced binding to CUB7,8 and FcRn that contribute to altered albumin transport, leading to increased vascular clearance and increased liver and endothelial tissue accumulation.


Asunto(s)
Antígenos de Histocompatibilidad Clase I/metabolismo , Túbulos Renales Proximales/metabolismo , Hígado/metabolismo , Receptores Fc/metabolismo , Insuficiencia Renal Crónica/metabolismo , Albúmina Sérica/metabolismo , Animales , Cromatografía Liquida , Modelos Animales de Enfermedad , Tasa de Filtración Glomerular , Túbulos Renales Proximales/fisiopatología , Lisina , Masculino , Microscopía de Fluorescencia por Excitación Multifotónica , Unión Proteica , Carbamilación de Proteína , Ratas Endogámicas , Ratas Sprague-Dawley , Receptores de Superficie Celular/metabolismo , Insuficiencia Renal Crónica/patología , Insuficiencia Renal Crónica/fisiopatología , Dispersión del Ángulo Pequeño , Espectrometría de Masas en Tándem , Factores de Tiempo , Difracción de Rayos X
14.
Proc Natl Acad Sci U S A ; 117(11): 6086-6091, 2020 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-32123080

RESUMEN

Recombinant immunotoxins (RITs) are chimeric proteins composed of an Fv and a protein toxin being developed for cancer treatment. The Fv brings the toxin to the cancer cell, but most of the RITs do not reach the tumor and are removed by other organs. To identify cells responsible for RIT removal, and the pathway by which RITs reach these cells, we studied SS1P, a 63-kDa RIT that targets mesothelin-expressing tumors and has a short serum half-life. The major organs that remove RIT were identified by live mouse imaging of RIT labeled with FNIR-Z-759. Cells responsible for SS1P removal were identified by immunohistochemistry and intravital two-photon microscopy of kidneys of rats. The primary organ of SS1P removal is kidney followed by liver. In the kidney, SS1P passes through the glomerulus, is taken up by proximal tubular cells, and transferred to lysosomes. In the liver, macrophages are involved in removal. The short half-life of SS1P is due to its very rapid filtration by the kidney followed by degradation in proximal tubular cells of the kidney. In mice treated with SS1P, proximal tubular cells are damaged and albumin in the urine is increased. SS1P uptake by kidney is reduced by coadministration of l-lysine. Our data suggests that l-lysine administration to humans might prevent SS1P-mediated kidney damage, reduce albumin loss in urine, and alleviate capillary leak syndrome.


Asunto(s)
Albuminuria/patología , Anticuerpos Monoclonales/farmacocinética , Síndrome de Fuga Capilar/patología , Inmunotoxinas/farmacocinética , Túbulos Renales Proximales/efectos de los fármacos , Albuminuria/inducido químicamente , Albuminuria/prevención & control , Albuminuria/orina , Animales , Anticuerpos Monoclonales/administración & dosificación , Anticuerpos Monoclonales/química , Anticuerpos Monoclonales/toxicidad , Síndrome de Fuga Capilar/inducido químicamente , Síndrome de Fuga Capilar/prevención & control , Síndrome de Fuga Capilar/orina , Modelos Animales de Enfermedad , Femenino , Colorantes Fluorescentes/química , Semivida , Humanos , Inmunotoxinas/administración & dosificación , Inmunotoxinas/química , Inmunotoxinas/toxicidad , Microscopía Intravital , Glomérulos Renales/metabolismo , Túbulos Renales Proximales/diagnóstico por imagen , Túbulos Renales Proximales/metabolismo , Túbulos Renales Proximales/patología , Lisina/administración & dosificación , Mesotelina , Ratones , Microscopía Fluorescente , Neoplasias/tratamiento farmacológico , Proteínas Recombinantes/administración & dosificación , Proteínas Recombinantes/química , Proteínas Recombinantes/farmacocinética , Proteínas Recombinantes/toxicidad , Eliminación Renal/efectos de los fármacos , Albúmina Sérica/análisis , Albúmina Sérica/metabolismo , Coloración y Etiquetado
15.
J Clin Invest ; 129(9): 3941-3951, 2019 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-31424427

RESUMEN

Nature exploits cage-like proteins for a variety of biological purposes, from molecular packaging and cargo delivery to catalysis. These cage-like proteins are of immense importance in nanomedicine due to their propensity to self-assemble from simple identical building blocks to highly ordered architecture and the design flexibility afforded by protein engineering. However, delivery of protein nanocages to the renal tubules remains a major challenge because of the glomerular filtration barrier, which effectively excludes conventional size nanocages. Here, we show that DNA-binding protein from starved cells (Dps) - the extremely small archaeal antioxidant nanocage - is able to cross the glomerular filtration barrier and is endocytosed by the renal proximal tubules. Using a model of endotoxemia, we present an example of the way in which proximal tubule-selective Dps nanocages can limit the degree of endotoxin-induced kidney injury. This was accomplished by amplifying the endogenous antioxidant property of Dps with addition of a dinuclear manganese cluster. Dps is the first-in-class protein cage nanoparticle that can be targeted to renal proximal tubules through glomerular filtration. In addition to its therapeutic potential, chemical and genetic engineering of Dps will offer a nanoplatform to advance our understanding of the physiology and pathophysiology of glomerular filtration and tubular endocytosis.


Asunto(s)
Proteínas Arqueales/farmacología , Proteínas de Unión al ADN/farmacología , Tasa de Filtración Glomerular/efectos de los fármacos , Túbulos Renales Proximales/metabolismo , Sulfolobus solfataricus , Animales , Masculino , Ratones , Ratas , Ratas Wistar , Proteínas Recombinantes/farmacología
16.
Methods Cell Biol ; 153: 43-67, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31395384

RESUMEN

Renal tubular epithelial cells are consistently exposed to flow of glomerular filtrate that creates fluid shear stress at the apical cell surface. This biophysical stimulus regulates several critical renal epithelial cell functions, including transport, protein uptake, and barrier function. Defining the in vivo mechanical conditions in the kidney tubule is important for accurately recapitulating these conditions in vitro. Here we provide a summary of the fluid flow conditions in the kidney and how this translates into different levels of fluid shear stress down the length of the nephron. A detailed method is provided for measuring fluid flow in the proximal tubule by intravital microscopy. Devices to mimic in vivo fluid shear stress for in vitro studies are discussed, and we present two methods for culture and analysis of renal tubule epithelial cells exposed physiological levels of fluid shear stress. The first is a microfluidic device that permits application of controlled shear stress to cells cultured on porous membranes. The second is culture of renal tubule cells on an orbital shaker. Each method has advantages and disadvantages that should be considered in the context of the specific experimental objectives.


Asunto(s)
Células Epiteliales/fisiología , Microscopía Intravital/métodos , Túbulos Renales Proximales/citología , Técnicas Analíticas Microfluídicas/métodos , Estrés Mecánico , Administración Intravenosa , Animales , Membrana Celular/fisiología , Células Cultivadas , Células Epiteliales/citología , Colorantes Fluorescentes/administración & dosificación , Tasa de Filtración Glomerular/fisiología , Microscopía Intravital/instrumentación , Túbulos Renales Proximales/fisiología , Técnicas Analíticas Microfluídicas/instrumentación , Microscopía de Fluorescencia por Excitación Multifotónica/instrumentación , Microscopía de Fluorescencia por Excitación Multifotónica/métodos , Ratas , Resistencia al Corte
17.
Methods Mol Biol ; 2018: 151-175, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31228156

RESUMEN

The rat is a favored model organism to study physiological function in vivo. This is largely due to the fact that it has been used for decades and is often more comparable to corresponding human conditions (both normal and pathologic) than mice. Although the development of genetic manipulations in rats has been slower than in mice, recent advances of new genomic editing tools allow for the generation of targeted global and specific cell type mutations in different rat strains. The rat is an ideal model for advancing imaging techniques like intravital multi-photon microscopy or IVMPM. Multi-photon excitation microscopy can be applied to visualize real-time physiologic events in multiple organs including the kidney. This imaging modality can generate four-dimensional high resolution images that are inherently confocal due to the fact that the photon density needed to excite fluorescence only occurs at the objective focal plane, not above or below. Additionally, longer excitation wavelengths allow for deeper penetration into tissue, improved excitation, and are inherently less phototoxic than shorter excitation wavelengths. Applying imaging tools to study physiology in rats has become a valuable scientific technique due to the relatively simple surgical procedures, improved quality of reagents, and reproducibility of established assays. In this chapter, the authors provide an example of the application of fluorescent techniques to study cardio-renal functions in rat models. Use of experimental procedures described here, together with multiple available genetically modified animal models, provide new prospective for the further application of multi-photon microscopy in basic and translational research.


Asunto(s)
Corazón/anatomía & histología , Microscopía Intravital/veterinaria , Riñón/anatomía & histología , Microscopía de Fluorescencia por Excitación Multifotónica/veterinaria , Animales , Humanos , Imagenología Tridimensional , Microscopía Fluorescente , Modelos Animales , Ratas
18.
Cardiorenal Med ; 9(3): 168-179, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30844821

RESUMEN

OBJECTIVES: To determine the performance of a rapid fluorescent indicator technique for measuring plasma volume (PV). METHODS: This was an open-label, observational evaluation of a two-component intravenous visible fluorescent dye technique to rapidly measure PV in 16 healthy subjects and 16 subjects with chronic kidney disease (8 stage 3 and 8 stage 4 CKD), at 2 clinical research sites. The method consisted of a single intravenous injection of 12 mg of a large 150-kDa carboxy-methyl dextran conjugated to a fluorescent rhodamine-derived dye as the PV marker (PVM), and 35 mg of a small 5-kDa carboxy-methyl dextran conjugated to fluorescein, the renal clearance marker. Dye concentrations were quantified 15 min after the injections for initial PV measurements using the indicator-dilution principle. Additional samples were taken over 8 h to evaluate the stability of the PVM as a determinant of PV. Blood volumes (BV) were calculated based on PV and the subject's hematocrit. Pharmacokinetic parameters were calculated from the plasma concentration data taken over several days using noncompartmental methods (Phoenix WinNonlin®). Linear correlation and Bland-Altman plots were used to compare visible fluorescent injectate-measured PV compared to Nadler's formula for estimating PV. Finally, 8 healthy subjects received 350 mL infusion of a 5% albumin solution in normal saline over 30 min and a repeat PV determination was then carried out. RESULTS: PV and BV varied according to weight and body surface area, with PV ranging from 2,115 to 6,234 mL and 28.6 to 41.9 mL/kg when weight adjusted. Both parameters were stable for > 6 h with repeated plasma measurements of the PVM. There was no difference between healthy subjects and CKD subjects. Overall, there was general agreement with Nadler's estimation formula for the mean PV in subjects. A 24-h repeat dose measurement in 8 healthy subjects showed PV variability of 98 ± 121 mL (mean = 3.8%). Additionally, following an intravenous bolus of 350 mL of a 5% albumin solution in normal saline in 8 healthy subjects, the mean (SD) measured increase in PV was 356 (±50.0) mL post-infusion. There were no serious adverse events reported during the study. CONCLUSIONS: This minimally invasive fluorescent dye approach safely allowed for rapid, accurate, and reproducible determination of PV, BV, and dynamic monitoring of changes following fluid administration.


Asunto(s)
Verde de Indocianina/farmacocinética , Volumen Plasmático/fisiología , Insuficiencia Renal Crónica/sangre , Espectrometría de Fluorescencia/métodos , Adolescente , Adulto , Anciano , Colorantes/farmacocinética , Femenino , Estudios de Seguimiento , Humanos , Masculino , Persona de Mediana Edad , Estudios Prospectivos , Insuficiencia Renal Crónica/diagnóstico , Adulto Joven
19.
Pathog Dis ; 76(8)2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-30476069

RESUMEN

Bacterial infection of the kidney leads to a rapid cascade of host protective responses, many of which are still poorly understood. We have previously shown that following kidney infection with uropathogenic Escherichia coli (UPEC), vascular coagulation is quickly initiated in local perivascular capillaries that protects the host from progressing from a local infection to systemic sepsis. The signaling mechanisms behind this response have not however been described. In this study, we use a number of in vitro and in vivo techniques, including intravital microscopy, to identify two previously unrecognized components influencing this protective coagulation response. The acylation state of the Lipid A of UPEC lipopolysaccharide (LPS) is shown to alter the kinetics of local coagulation onset in vivo. We also identify epithelial CD147 as a potential host factor influencing infection-mediated coagulation. CD147 is expressed by renal proximal epithelial cells infected with UPEC, contingent to bacterial expression of the α-hemolysin toxin. The epithelial CD147 subsequently can activate tissue factor on endothelial cells, a primary step in the coagulation cascade. This study emphasizes the rapid, multifaceted response of the kidney tissue to bacterial infection and the interplay between host and pathogen during the early hours of renal infection.


Asunto(s)
Infecciones Bacterianas/sangre , Infecciones Bacterianas/inmunología , Infecciones Bacterianas/metabolismo , Basigina/metabolismo , Coagulación Sanguínea , Lípido A/inmunología , Nefritis/etiología , Nefritis/metabolismo , Animales , Biomarcadores , Línea Celular , Citocinas/metabolismo , Modelos Animales de Enfermedad , Células Epiteliales/metabolismo , Células Epiteliales/microbiología , Humanos , Mediadores de Inflamación/metabolismo , Masculino , Proteoma , Proteómica/métodos , Ratas , Transducción de Señal
20.
J Am Soc Nephrol ; 29(6): 1609-1613, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29748326

RESUMEN

Background Direct quantitative measurement of GFR (mGFR) remains a specialized task primarily performed in research settings. Multiple formulas for estimating GFR have been developed that use the readily available endogenous biomarkers creatinine and/or cystatin C. However, eGFR formulas have limitations, and an accurate mGFR is necessary in some clinical situations and for certain patient populations. We conducted a prospective, open-label study to evaluate a novel rapid technique for determining plasma volume and mGFR.Methods We developed a new exogenous biomarker, visible fluorescent injectate (VFI), consisting of a large 150-kD rhodamine derivative and small 5-kD fluorescein carboxymethylated dextrans. After a single intravenous injection of VFI, plasma volume and mGFR can be determined on the basis of the plasma pharmacokinetics of the rhodamine derivative and fluorescein carboxymethylated dextrans, respectively. In this study involving 32 adults with normal kidney function (n=16), CKD stage 3 (n=8), or CKD stage 4 (n=8), we compared VFI-based mGFR values with values obtained by measuring iohexol plasma disappearance. VFI-based mGFR required three 0.5-ml blood draws over 3 hours; iohexol-based mGFR required five samples taken over 6 hours. Eight healthy participants received repeat VFI injections at 24 hours.Results VFI-based mGFR values showed close linear correlation with the iohexol-based mGFR values in all participants. Injections were well tolerated, including when given on consecutive days. No serious adverse events were reported. VFI-based mGFR was highly reproducible.Conclusions The VFI-based approach allows for the rapid determination of mGFR at the bedside while maintaining patient safety and measurement accuracy and reproducibility.


Asunto(s)
Dextranos/farmacocinética , Fluoresceína/farmacocinética , Tasa de Filtración Glomerular , Volumen Plasmático , Sistemas de Atención de Punto , Insuficiencia Renal Crónica/fisiopatología , Rodaminas/farmacocinética , Adulto , Anciano , Estudios de Casos y Controles , Dextranos/administración & dosificación , Femenino , Fluoresceína/administración & dosificación , Colorantes Fluorescentes/administración & dosificación , Colorantes Fluorescentes/farmacocinética , Humanos , Inyecciones Intravenosas , Yohexol/farmacocinética , Masculino , Persona de Mediana Edad , Estudios Prospectivos , Reproducibilidad de los Resultados , Rodaminas/administración & dosificación , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA