Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Materials (Basel) ; 13(18)2020 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-32899864

RESUMEN

The design of advanced alloys specifically tailored to additive manufacturing processes is a research field that is attracting ever-increasing attention. Laser powder-bed fusion (LPBF) commonly uses pre-alloyed, fine powders (diameter usually 15-45 µm) to produce fully dense metallic parts. The availability of such fine, pre-alloyed powders reduces the iteration speed of alloy development for LPBF and renders it quite costly. Here, we overcome these drawbacks by performing in-situ alloying in LPBF starting with pure elemental powder mixtures avoiding the use of costly pre-alloyed powders. Pure iron, chromium, and nickel powder mixtures were used to perform in-situ alloying to manufacture 304 L stainless steel cube-shaped samples. Process parameters including scanning speed, laser power, beam diameter, and layer thickness were varied aiming at obtaining a chemically homogeneous alloy. The scientific questions focused on in this work are: which process parameters are required for producing such samples (in part already known in the state of the art), and why are these parameters conducive to homogeneity? Analytical modelling of the melt pool geometry and temperature field suggests that the residence time in the liquid state is the most important parameter controlling the chemical homogeneity of the parts. Results show that in-situ alloying can be successfully employed to enable faster and cost-efficient rapid alloy development.

2.
Molecules ; 24(1)2018 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-30591659

RESUMEN

Both numerical simulation and hardness measurements were used to determine the mechanical and microstructural behavior of AZ31 bulk samples when submitted to the Equal Channel Angular Pressing (ECAP) technique. Billets of this representative of Mg-rich alloys were submitted to different numbers of passes for various ECAP modes (anisotropic A, isotropic BC). The strain distribution, the grain size refinement, and the micro-hardness were used as indicators to quantify the effectiveness of the different processing routes. Structural characterizations at different scales were achieved using Scanning Electron Microscopy (SEM), micro-analysis, metallography, Small Angle Neutron Scattering SANS, X-Ray Diffraction (XRD), and texture determination. The grain and crystallite size distribution and orientation as well as defect impacts were determined. Anelastic Spectroscopy (AS) on mechanically deformed samples have shown that the temperature of ECAP differentiate the fragile to ductile regime. MgH2 consolidated powders were checked for using AS to detect potential hydrogen motions and interaction with host metal atoms. After further optimization, the different mechanically-treated samples were submitted to hydrogenation/dehydrogenation (H/D) cycles, which shows that, for a few passes, the BC mode is better than the A one, as supported by theoretical and experimental microstructure analyses. Accordingly, the hydrogen uptake and (H/D) reactions were correlated with the optimized microstructure peculiarities and interpreted in terms of Johnson-Avrami- Mehl-Kolmogorov (JAMK) and Jander models, successively.


Asunto(s)
Aleaciones/química , Simulación por Computador , Hidrógeno/química , Magnesio/química , Ensayo de Materiales/métodos , Análisis Numérico Asistido por Computador , Plásticos/química , Adsorción , Dureza , Cinética , Difracción de Neutrones , Quinolinas/química , Dispersión del Ángulo Pequeño , Análisis Espectral , Estrés Mecánico , Temperatura , Difracción de Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA