RESUMEN
RNA purification and cDNA synthesis represents the starting point for molecular analyses of snake venom proteins-enzymes. Usually, the sacrifice of snakes is necessary for venom gland extraction to identify protein-coding transcripts; however, the venom can be used as a source of transcripts. Although there are methods for obtaining RNA from venom, no comparative analysis has been conducted in the Bothrops genus. In the present study, we compared four commercial methods for RNA purification and cDNA synthesis from venom (liquid, lyophilized, or long-term storage) of four clinically relevant species of Peruvian Bothrops. Our results show that the TRIzol method presents the highest yield of RNA purified from venom (59 ± 11 ng/100 µL or 10 mg). The SuperScript First-Strand Synthesis System kit produced high amounts of cDNA (3.2 ± 1.2 ng cDNA/ng RNA), and the highest value was from combination with the Dynabeads mRNA DIRECT kit (4.8 ± 2.0 ng cDNA/ng RNA). The utility of cDNA was demonstrated with the amplification of six relevant toxins: thrombin-like enzymes, P-I and P-III metalloproteinases, acid and basic phospholipases A2, and disintegrins. To our knowledge, this is the first comparative study of RNA purification and cDNA synthesis methodologies from Bothrops genus venom.
Asunto(s)
Bothrops , Venenos de Crotálidos , Animales , ADN Complementario/genética , Bothrops/genética , Perú , Relevancia Clínica , Venenos de Crotálidos/genética , Proteínas , ARNRESUMEN
Rhomb-I, a 23-kDa metalloproteinase was isolated from L. m. rhombeata venom. Its dimethylcasein proteolysis was abolished by metal chelators, and slightly enhanced by Ca2+ and Mg2+ ions, but inhibited by Co2+, Zn2+ and α2-macroglobulin. In aqueous solution, rhomb-I autoproteolyzed to a 20- and 11-kDa fragments at 37 °C. The amino acid sequence showed high homology with other snake venom metalloproteinases. Rhomb-I causes hemorrhage that may be ascribed to hydrolysis of essential basement membrane, extracellular matrix and plasma proteins. It preferentially cleaves the α-chains of fibrin (ogen). Rhomb-I inhibited convulxin- and von Willebrand factor (vWF)-induced aggregation on human platelets without significant effect on collagen-stimulated aggregation or other effectors. It digests vWF into a low-molecular-mass multimers of vWF and a rvWF-A1 domain to a 27-kDa fragment as revealed by western blotting with mouse anti-rvWF A1-domain IgG. Incubation of platelets with rhomb-I resulted in adhesion to and cleavage of platelet receptors glycoprotein (GP)Ibα and GPVI to release a 55-kDa soluble form. Both membrane glycoproteins GPIbα that binds vWF, together with GPVI which binds collagen, play a key role in mediating platelet adhesion/activation and can initiate (patho)physiological thrombus formation. Conclusions: rhomb-I is implicated in the pathophysiology of Lachesis envenoming by disrupting vasculature, hemostasis and platelet aggregation through impairing vWF-GPIb axis and blocking GPVI-collagen binding.
Asunto(s)
Agregación Plaquetaria , Factor de von Willebrand , Humanos , Animales , Ratones , Factor de von Willebrand/metabolismo , Metaloproteasas/metabolismo , Plaquetas , Colágeno/metabolismoRESUMEN
Previous knowledge about the taxonomic distribution of venomous snake species is very useful for epidemiological aspects of ophidism. Here, we sought to develop an assay for the differential identification of clinically relevant snakes in Peru: Bothrops atrox, Lachesis muta, and Crotalus durissus using a multiplex loop-mediated isothermal amplification (mLAMP) assay. For this, DNA was extracted from the shed snake skins and the mitochondrial genes Cytb, COI, and 12S rRNA were amplified and further sequenced, for the design of mLAMP reaction primers. For each snake species the forward and reverse primers, internal forward and reverse primers, and the loop primers were obtained, bearing the latter different fluorophores for product identification. Finally, the reaction was standardized in the presence of all primer sets, and an optimal amount of low molecular weight polyethyleneimine. The precipitated products were observed in a UV light transilluminator, finding a differential fluorescence according to the DNA used, with a detection limit to the naked eye in the range of 0.2-25 ng of DNA, within 30 min. This study is the first report on the use of mLAMP technology for the identification of venomous snakes.
Asunto(s)
Bothrops , Crotalinae , Animales , Perú , Técnicas de Amplificación de Ácido Nucleico , ADNRESUMEN
Rhomb-I, a 23-kDa metalloproteinase was isolated from L. m. rhombeata venom. Its dimethylcasein proteolysis was abolished by metal chelators, and slightly enhanced by Ca2+ and Mg2+ ions, but inhibited by Co2+, Zn2+ and α2-macroglobulin. In aqueous solution, rhomb-I autoproteolyzed to a 20- and 11-kDa fragments at 37 °C. The amino acid sequence showed high homology with other snake venom metalloproteinases. Rhomb-I causes hemorrhage that may be ascribed to hydrolysis of essential basement membrane, extracellular matrix and plasma proteins. It preferentially cleaves the α-chains of fibrin (ogen). Rhomb-I inhibited convulxin- and von Willebrand factor (vWF)-induced aggregation on human platelets without significant effect on collagen-stimulated aggregation or other effectors. It digests vWF into a low-molecular-mass multimers of vWF and a rvWF-A1 domain to a 27-kDa fragment as revealed by western blotting with mouse anti-rvWF A1-domain IgG. Incubation of platelets with rhomb-I resulted in adhesion to and cleavage of platelet receptors glycoprotein (GP)Ibα and GPVI to release a 55-kDa soluble form. Both membrane glycoproteins GPIbα that binds vWF, together with GPVI which binds collagen, play a key role in mediating platelet adhesion/activation and can initiate (patho)physiological thrombus formation. Conclusions: rhomb-I is implicated in the pathophysiology of Lachesis envenoming by disrupting vasculature, hemostasis and platelet aggregation through impairing vWF-GPIb axis and blocking GPVI-collagen binding.
RESUMEN
Bothorps atrox is responsible for most of the ophidism cases in Perú. As part of the envenoming, myotoxicity is one of the most recurrent and destructive effects. In this study, a myotoxin, named BaMtx, was purified from B. atrox venom to elucidate its biological, immunological, and molecular characteristics. BaMtx was purified using CM-Sephadex-C-25 ion-exchange resin and SDS-PAGE analysis showed a unique protein band of 13 kDa or 24 kDa under reducing or non-reducing conditions, respectively. cDNA sequence codified a 122-aa mature protein with high homology with other Lys49-PLA2s; modeled structure showed a N-terminal helix, a ß-wing region, and a C-terminal random coil. This protein has a poor phospholipase A2 enzymatic activity. BaMtx has myotoxic (DMM = 12.30 ± 0.95 µg) and edema-forming (DEM = 26.00 ± 1.15 µg) activities. Rabbit immunization with purified enzyme produced anti-BaMtx antibodies that reduced 50.28 ± 10.15% of myotoxic activity and showed significant cross-reactivity against B. brazili and B pictus venoms. On the other hand, BaMtx exhibits mild anti-proliferative and anti-migratory effects on breast cancer cells, affecting the ROS and NADH levels, which may reduce mitochondrial respiration. These results contribute to the understanding of B. atrox Lys49-PLA2 effects and establish the anticancer potential de BaMtx.
Asunto(s)
Bothrops , Venenos de Crotálidos , Viperidae , Secuencia de Aminoácidos , Animales , Bothrops/metabolismo , Miotoxicidad , Perú , Fosfolipasas A2/química , Conejos , Viperidae/metabolismoRESUMEN
Cardiovascular effects induced by snake venoms, in spite of having a crucial role in the outcome of the envenomation, have been less studied than other toxic activities displayed by these venoms. In this study we evaluated acute cardiovascular responses to Bothrops leucurus venom - Bl-V - both in vivo, in anesthetized rats, and in vitro, in isolated rat mesenteric resistance arteries. Bl-V (10-100 µg protein/kg) caused dose-dependent hypotension, followed by gradual recovery (2-20 min) to basal levels, and induced dose-dependent (1-20 µg/mL) vasodilation in pre-contracted arteries, what was more pronounced when the endothelium remained intact. These effects were partially counteracted by pre-treatment with indomethacin (cyclooxygenase inhibitor). Prior incubation of Bl-V with commercial pentavalent Bothrops antivenom also attenuated the cardiovascular effects induced by the venom, in spite of it not being among the venoms used for the development of the bothropic antivenom. Through an approach based on two chromatographic steps and mass spectrometry (MALDI-ToF and MALDI-ISD), a component with acute cardiovascular effects was isolated and identified as the basic phospholipase blD-PLA2, previously purified from the venom of B. leucurus. Taken together, our results show that, at low doses, the venom of B. leucurus induces transient, acute hypotension in anesthetized rats following systemic vasodilation in a dose-dependent way. In addition, we provide clear evidence of the involvement of the enzymatic activity of blD-PLA2 in this cardiovascular response, acting via the production of vasodilating prostanoids.
Asunto(s)
Bothrops , Venenos de Crotálidos/toxicidad , Fosfolipasas A2/metabolismo , Animales , Hipotensión/inducido químicamente , Ratas , Venenos de SerpienteRESUMEN
Atroxlysin-III (Atr-III) was purified from the venom of Bothrops atrox. This 56-kDa protein bears N-linked glycoconjugates and is a P-III hemorrhagic metalloproteinase. Its cDNA-deduced amino acid sequence reveals a multidomain structure including a proprotein, a metalloproteinase, a disintegrin-like and a cysteine-rich domain. Its identity with bothropasin and jararhagin from Bothrops jararaca is 97% and 95%, respectively. Its enzymatic activity is metal ion-dependent. The divalent cations, Mg2+ and Ca2+, enhance its activity, whereas excess Zn2+ inhibits it. Chemical modification of the Zn2+-complexing histidine residues within the active site by using diethylpyrocarbonate (DEPC) inactivates it. Atr-III degrades plasma fibronectin, type I-collagen, and mainly the α-chains of fibrinogen and fibrin. The von Willebrand factor (vWF) A1-domain, which harbors the binding site for GPIb, is not hydrolyzed. Platelets interact with collagen via receptors for collagen, glycoprotein VI (GPVI), and α2ß1 integrin. Neither the α2ß1 integrin nor its collagen-binding A-domain is fragmented by Atr-III. In contrast, Atr-III cleaves glycoprotein VI (GPVI) into a soluble ~55-kDa fragment (sGPVI). Thereby, it inhibits aggregation of platelets which had been stimulated by convulxin, a GPVI agonist. Selectively, Atr-III targets GPVI antagonistically and thus contributes to the antithrombotic effect of envenomation by Bothrops atrox.
Asunto(s)
Plaquetas/efectos de los fármacos , Plaquetas/metabolismo , Venenos de Crotálidos/enzimología , Crotalinae , Metaloproteasas/farmacología , Glicoproteínas de Membrana Plaquetaria/biosíntesis , Secuencia de Aminoácidos , Animales , Crotalinae/metabolismo , Matriz Extracelular , Metaloproteasas/química , Metaloproteasas/genética , Metaloproteasas/aislamiento & purificación , Modelos Moleculares , Filogenia , Glicoproteínas de Membrana Plaquetaria/antagonistas & inhibidores , Glicoproteínas de Membrana Plaquetaria/química , Conformación Proteica , Proteolisis , Relación Estructura-ActividadRESUMEN
Snake venoms are a rich source of enzymes such as metalloproteinases, serine proteinases phospholipases A2 and myotoxins, that have been well characterized structurally and functionally. However, hyaluronidases (E.C.3.2.1.35) have not been studied extensively. In this study, we describe the biochemical and molecular features of a hyaluronidase (Hyal-Ba) isolated from the venom of the Peruvian snake Bothrops atrox. Hyal-Ba was purified by a combination of ion-exchange and gel filtration chromatography. Purified Hyal-Ba is a 69-kDa (SDS-PAGE) monomeric glycoprotein with an N-terminal amino acid sequence sharing high identity with homologous snake venom hyaluronidases. Detected associated carbohydrates were hexoses (16.38%), hexosamines (2.7%) and sialic acid (0.69%). Hyal-Ba selectively hydrolyzed only hyaluronic acid (HA; specific activityâ¯=â¯437.5 U/mg) but it did not hydrolyze chondroitin sulfate or heparin. The optimal pH and temperature for maximum activity were 6.0 and 40⯰C, respectively, and its Km was 0.31⯵M. Its activity was inhibited by EDTA, iodoacetate, 2-mercaptoethanol, TLCK and dexamethasone. Na+ and K+ (0.2â¯M) positively affect hyaluronidase activity; while Mg2+, Br2+, Ba2+, Cu2+, Zn2+, and Cd2+ reduced catalytic activity. Hyal-Ba potentiates the hemorrhagic and hemolytic activity of whole venom, but decreased subplantar edema caused by an l-amino acid oxidase (LAAO). The Hyal-Ba cDNA sequence (2020 bp) encodes 449 amino acid residues, including the catalytic site residues (Glu135, Asp133, Tyr206, Tyr253 and Trp328) and three functional motifs for N-linked glycosylation, which are conserved with other snake hyaluronidases. Spatial modeling of Hyal-Ba displayed a TIM-Barrel (α/ß) fold and an EGF-like domain in the C-terminal portion. The phylogenetic analysis of Hyal-Ba with other homologous Hyals showed the monophyly of viperids. Further, Hyal-Ba studies may extend our knowledge of B. atrox toxinology and provides insight to improve the neutralizing strategies of therapeutic antivenoms.
Asunto(s)
Bothrops/metabolismo , Venenos de Crotálidos , Hialuronoglucosaminidasa , Animales , Secuencia de Bases/genética , Venenos de Crotálidos/enzimología , Venenos de Crotálidos/toxicidad , ADN Complementario , Hialuronoglucosaminidasa/química , Hialuronoglucosaminidasa/clasificación , Hialuronoglucosaminidasa/genética , Hialuronoglucosaminidasa/toxicidad , Cinética , Ratones , Ratones Endogámicos BALB C , Modelos Moleculares , Perú , Filogenia , Estabilidad Proteica , Estructura Secundaria de Proteína , Especificidad por SustratoRESUMEN
Snake venom metalloproteinases (SVMPs) are predominant in viperid venoms, which provoke hemorrhage and affect hemostasis and thrombosis. P-I class enzymes consist only of a single metalloproteinase domain. Despite sharing high sequence homology, only some of them induce hemorrhage. They have direct fibrin(ogen)olytic activity. Their main biological substrate is fibrin(ogen), whose Aα-chain is degraded rapidly and independently of activation of plasminogen. It is important to understand their biochemical and physiological mechanisms, as well as their applications, to study the etiology of some human diseases and to identify sites of potential intervention. As compared to all current antiplatelet therapies to treat cardiovascular events, the SVMPs have outstanding biochemical attributes: (a) they are insensitive to plasma serine proteinase inhibitors; (b) they have the potential to avoid bleeding risk; (c) mechanistically, they are inactivated/cleared by α2-macroglobulin that limits their range of action in circulation; and (d) few of them also impair platelet aggregation that represent an important target for therapeutic intervention. This review will briefly highlight the structure-function relationships of these few direct-acting fibrinolytic agents, including, barnettlysin-I, isolated from Bothrops barnetti venom, that could be considered as potential agent to treat major thrombotic disorders. Some of their pharmacological advantages are compared with plasmin.
Asunto(s)
Fibrinolíticos/farmacología , Hemostasis/efectos de los fármacos , Metaloproteasas/farmacología , Venenos de Serpiente/enzimología , Serpientes , Secuencia de Aminoácidos , Animales , Dominio Catalítico , Fibrinolíticos/química , Fibrinolíticos/uso terapéutico , Humanos , Metaloproteasas/química , Metaloproteasas/uso terapéutico , Especificidad de la Especie , Relación Estructura-ActividadRESUMEN
An L-amino acid oxidase from Peruvian Bothrops pictus (Bpic-LAAO) snake venom was purified using a combination of size-exclusion and ion-exchange chromatography. Bpic-LAAO is a homodimeric glycosylated flavoprotein with molecular mass of â¼65 kDa under reducing conditions and â¼132 kDa in its native form as analyzed by SDS-PAGE and gel filtration chromatography, respectively. N-terminal amino acid sequencing showed highly conserved residues in a glutamine-rich motif related to binding substrate. The enzyme exhibited optimal activity towards L-Leu at pH 8.5, and like other reported SV-LAAOs, it is stable until 55 °C. Kinetic studies showed that the cations Ca2+, Mg2+ and Mn2+ did not alter Bpic-LAAO activity; however, Zn2+ is an inhibitor. Some reagents such as ß-mercaptoethanol, glutathione and iodoacetate had inhibitory effect on Bpic-LAAO activity, but PMSF, EDTA and glutamic acid did not affect its activity. Regarding the biological activities of Bpic-LAAO, this enzyme induced edema in mice (MED = 7.8 µg), and inhibited human platelet aggregation induced by ADP in a dose-dependent manner and showed antibacterial activity on Gram (+) and Gram (-) bacteria. Bpic-LAAO cDNA of 1494 bp codified a mature protein with 487 amino acid residues comprising a signal peptide of 11 amino acids. Finally, the phylogenetic tree obtained with other sequences of LAAOs, evidenced its similarity to other homologous enzymes, showing two well-established monophyletic groups in Viperidae and Elapidae families. Bpic-LAAO is evolutively close related to LAAOs from B. jararacussu, B. moojeni and B. atrox, and together with the LAAO from B. pauloensis, form a well-defined cluster of the Bothrops genus.
Asunto(s)
Venenos de Crotálidos/enzimología , L-Aminoácido Oxidasa/química , L-Aminoácido Oxidasa/aislamiento & purificación , Secuencia de Aminoácidos , Animales , Antiinfecciosos/farmacología , Bacterias/efectos de los fármacos , Bothrops , Venenos de Crotálidos/toxicidad , Femenino , Humanos , L-Aminoácido Oxidasa/antagonistas & inhibidores , Masculino , Ratones , Perú , Filogenia , Agregación Plaquetaria/efectos de los fármacos , Relación Estructura-ActividadRESUMEN
Snakebite envenoming is a neglected public pathology, affecting especially rural communities or isolated areas of tropical and subtropical Latin American countries. The parenteral administration of antivenom is the mainstay and the only validated treatment of snake bite envenoming. Here, we assess the efficacy of polyspecific anti-Bothrops serum (α-BS) produced in the Instituto Nacional de Salud (INS, Peru) and at the Fundação Ezequiel Dias (FUNED, Brazil), to neutralize the main toxic activities induced by five medically-relevant venoms of: Bothrops atrox, B. barnetti, and B. pictus from Peru, and the Brazilian B. jararaca and B. leucurus, all of them inhabiting different geographical locations. Protein electrophoretic patterns of these venoms showed significant differences in composition, number and intensity of bands. Another goal was to evaluate the efficacy and safety of lyophilized α-BS developed at INS to neutralize the detrimental effects of these venoms using in vivo and in vitro assays. The availability of lyophilized α-BS has relevant significance in its distribution to distant rural communities where the access to antivenom in health facilities is more difficult. Despite the fact that different antigen mixtures were used for immunization during antivenom production, our data showed high toxin-neutralizing activity of α-BS raised against Bothrops venoms. Moreover, the antivenom cross-reacted even against venoms not included in the immunization mixture. Furthermore, we have evaluated the efficacy of both α-BS to neutralize key toxic compounds belonging to the predominant protein families of Bothrops snakes. Most significantly, both α-BS cross-specifically neutralized the main toxicological activities e.g. lethality and hemorrhage induced by these venoms. Thus, our data indicate that both α-BS are equally effective to treat snake bite victims inflicted by Bothrops snakes particularly B. atrox, responsible for the largest numbers of human envenomations in the Amazon regions of some South American countries including Peru and Brazil.
Asunto(s)
Antivenenos/uso terapéutico , Venenos de Crotálidos/toxicidad , Brasil , Venenos de Crotálidos/antagonistas & inhibidores , Electroforesis en Gel de Poliacrilamida , Pruebas de Neutralización , PerúRESUMEN
We report the detailed molecular characterization of two PLA2s, Lys49 and Asp49 isolated from Bothrops leucurus venom, and examined their effects against Dengue virus (DENV). The Bl-PLA2s, named BlK-PLA2 and BlD-PLA2, are composed of 121 and 122 amino acids determined by automated sequencing of the native proteins and peptides produced by digestion with trypsin. They contain fourteen cysteines with pIs of 9.05 and 8.18 for BlK- and BlD-PLA2s, and show a high degree of sequence similarity to homologous snake venom PLA2s, but may display different biological effects. Molecular masses of 13,689.220 (Lys49) and 13,978.386 (Asp49) were determined by mass spectrometry. DENV causes a prevalent arboviral disease in humans, and no clinically approved antiviral therapy is currently available to treat DENV infections. The maximum non-toxic concentration of the proteins to LLC-MK2 cells determined by MTT assay was 40 µg/mL for Bl-PLA2s (pool) and 20 µg/mL for each isoform. Antiviral effects of Bl-PLA2s were assessed by quantitative Real-Time PCR. Bl-PLA2s were able to reduce DENV-1, DENV-2, and DENV-3 serotypes in LLC-MK2 cells infection. Our data provide further insight into the structural properties and their antiviral activity against DENV, opening up possibilities for biotechnological applications of these Bl-PLA2s as tools of research.
Asunto(s)
Antivirales/aislamiento & purificación , Virus del Dengue/efectos de los fármacos , Fosfolipasas A2/aislamiento & purificación , Proteínas de Reptiles/aislamiento & purificación , Venenos de Serpiente/química , Aedes , Secuencia de Aminoácidos , Animales , Antivirales/química , Antivirales/farmacología , Bothrops , Línea Celular , Macaca mulatta , Datos de Secuencia Molecular , Fosfolipasas A2/química , Fosfolipasas A2/farmacología , Proteínas de Reptiles/química , Proteínas de Reptiles/farmacología , Alineación de SecuenciaRESUMEN
Snake venoms are complex mixtures of proteins of both enzymes and nonenzymes, which are responsible for producing several biological effects. Human envenomation by snake bites particularly those of the viperid family induces a complex pathophysiological picture characterized by spectacular changes in hemostasis and frequently hemorrhage is also seen. The present work reports the ability of six of a series of 1,2,3-triazole derivatives to inhibit some pharmacological effects caused by the venoms of Bothrops jararaca and Lachesis muta. In vitro assays showed that these compounds were impaired in a concentration-dependent manner, the fibrinogen or plasma clotting, hemolysis, and proteolysis produced by both venoms. Moreover, these compounds inhibited biological effects in vivo as well. Mice treated with these compounds were fully protected from hemorrhagic lesions caused by such venoms. But, only the B. jararaca edema-inducing activity was neutralized by the triazoles. So the inhibitory effect of triazoles derivatives against some in vitro and in vivo biological assays of snake venoms points to promising aspects that may indicate them as molecular models to improve the production of effective antivenom or to complement antivenom neutralization, especially the local pathological effects, which are partially neutralized by antivenoms.
Asunto(s)
Bothrops , Venenos de Serpiente/antagonistas & inhibidores , Triazoles/administración & dosificación , Viperidae , Animales , Antivenenos/administración & dosificación , Antivenenos/química , Coagulación Sanguínea/efectos de los fármacos , Humanos , Ratones , Mordeduras de Serpientes/tratamiento farmacológico , Triazoles/químicaRESUMEN
The thrombin-like enzyme from Bothrops barnetti named barnettobin was purified. We report some biochemical features of barnettobin including the complete amino acid sequence that was deduced from the cDNA. Snake venom serine proteases affect several steps of human hemostasis ranging from the blood coagulation cascade to platelet function. Barnettobin is a monomeric glycoprotein of 52 kDa as shown by reducing SDS-PAGE, and contains approx. 52% carbohydrate by mass which could be removed by N-glycosidase. The complete amino acid sequence was deduced from the cDNA sequence. Its sequence contains a single chain of 233 amino acid including three N-glycosylation sites. The sequence exhibits significant homology with those of mammalian serine proteases e.g. thrombin and with homologous TLEs. Its specific coagulant activity was 251.7 NIH thrombin units/mg, releasing fibrinopeptide A from human fibrinogen and showed defibrinogenating effect in mouse. Both coagulant and amidolytic activities were inhibited by PMSF. N-deglycosylation impaired its temperature and pH stability. Its cDNA sequence with 750 bp encodes a protein of 233 residues. Indications that carbohydrate moieties may play a role in the interaction with substrates are presented. Barnettobin is a new defibrinogenating agent which may provide an opportunity for the development of new types of anti-thrombotic drugs.
Asunto(s)
Bothrops/metabolismo , Coagulantes/química , ADN Complementario/química , Trombina/química , Ponzoñas/enzimología , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Coagulación Sanguínea , Coagulantes/metabolismo , Electroforesis en Gel de Poliacrilamida , Humanos , Ratones , Datos de Secuencia Molecular , Análisis de Secuencia , Trombina/metabolismo , Ponzoñas/farmacologíaRESUMEN
A group of cysteine-proteolytic enzymes from C. candamarcensis latex, designated as P1G10 displays pharmacological properties in animal models following various types of lesions. This enzyme fraction expresses in vitro fibrinolytic effect without need for plasminogen activation. Based on this evidence, we assessed by intravital microscopy the effect of P1G10 on recanalization of microvessels after thrombus induction in the ear of hairless mice. Video playback of intravital microscopic images allowed measurement of blood flow velocity (mm/s) during the experimental procedure. Groups treated with 5 or 7.5mg/Kg P1G10 showed thrombolysis between 7-15min, without vessel obstruction. Ex vivo experiments demonstrated that platelet activation by ADP is impaired in a dose dependent manner following treatment with P1G10. The P1G10 action on plasma coagulation also showed that prothrombin time (PT), thrombin time (TT) and activated partial thromboplastin time (aPTT, µg/uL) are increased in a dose dependent manner. In addition, P1G10 displayed fibrinogenolytic and fibrinolytic activities, both in a dose dependent manner. Each of these effects was suppressed by inhibition of the proteolytic activity of the fraction. The antithrombotic action of P1G10 can be explained by proteolytic cleavage of fibrinogen and fibrin, both key factors during formation of a stable thrombus. These results combined with prior evidence suggest that P1G10 has potential as thrombolytic agent.
Asunto(s)
Carica/enzimología , Proteasas de Cisteína/farmacología , Fibrinolíticos/farmacología , Trombosis/tratamiento farmacológico , Animales , Coagulación Sanguínea/efectos de los fármacos , Masculino , Ratones , Ratones Pelados , Agregación Plaquetaria/efectos de los fármacos , Ratas , Ratas Wistar , Trombosis/sangreRESUMEN
The ability of crude extracts of the brown seaweed Spatoglossum schröederi to counteract some of the biological activities of Lachesis muta snake venom was evaluated. In vitro assays showed that only the extract of S. schröederi prepared in ethyl acetate was able to inhibit the clotting of fibrinogen induced by L. muta venom. On the other hand, all extracts were able to inhibit partially the hemolysis caused by venom and those prepared in dichloromethane or ethyl acetate fully neutralized the proteolysis and hemorrhage produced by the venom. Moreover, the dichloromethane or ethyl acetate extracts inhibited the hemolysis induced by an isolated phospholipase A2 from L. muta venom, called LM-PLA2-I. In contrast, the hexane extract failed to protect mice from hemorrhage or to inhibit proteolysis and clotting. These results show that the polarity of the solvent used to prepare the extracts of S. schröederi algae influenced the potency of the inhibitory effect of the biological activities induced by L. muta venom. Thus, the seaweed S. schröederi may be a promising source of natural inhibitors of the enzymes involved in biological activities of L. muta venom.
RESUMEN
We report the comparative proteomic characterization of the venoms of Bothrops atrox, B. barnetti and B. pictus. The venoms were subjected to RP-HPLC and the resulting fractions analyzed by SDS-PAGE. The proteins were cut from the gels, digested with trypsin and identified via peptide mass fingerprint and manual sequencing of selected peptides by MALDI-TOF/TOF mass spectrometry. Around 20-25 proteins were identified belonging to only 6-7 protein families. Metalloproteinases of the classes P-I and P-III were the most abundant proteins in all venoms (58-74% based on peak area A214 nm), followed by phospholipases-A(2) (6.4-14%), disintegrins (3.2-9%) and serine proteinases (7-11%), and some of these proteins occurred in several isoforms. In contrast cysteine-rich secretory proteins and L-amino acid oxidases appeared only as single isoforms and were found only in B. atrox and B. barnetti. C-type lectins were also detected in all venoms but at low levels (~ 5%). Furthermore, the venoms contain variable numbers of peptides (<3 kDa) and non-protein compounds which were not considered in this work. The protein composition of the investigated Bothrops species is in agreement with their pharmacological and pathological effects.
Asunto(s)
Bothrops/metabolismo , Venenos de Crotálidos/metabolismo , Proteoma/metabolismo , Animales , Perú , Proteómica/métodos , Especificidad de la EspecieRESUMEN
Hemorrhage is a clinically important manifestation of viperid snakebite envenomings, and is induced by snake venom metalloproteinases (SVMPs). Hemorrhagic and non-hemorrhagic SVMPs hydrolyze some basement membrane (BM) and associated extracellular matrix (ECM) proteins. Nevertheless, only hemorrhagic SVMPs are able to disrupt microvessels; the mechanisms behind this functional difference remain largely unknown. We compared the proteolytic activity of the hemorrhagic P-I SVMP BaP1, from the venom of Bothrops asper, and the non-hemorrhagic P-I SVMP leucurolysin-a (leuc-a), from the venom of Bothrops leucurus, on several substrates in vitro and in vivo, focusing on BM proteins. When incubated with Matrigel, a soluble extract of BM, both enzymes hydrolyzed laminin, nidogen and perlecan, albeit BaP1 did it at a faster rate. Type IV collagen was readily digested by BaP1 while leuc-a only induced a slight hydrolysis. Degradation of BM proteins in vivo was studied in mouse gastrocnemius muscle. Western blot analysis of muscle tissue homogenates showed a similar degradation of laminin chains by both enzymes, whereas nidogen was cleaved to a higher extent by BaP1, and perlecan and type IV collagen were readily digested by BaP1 but not by leuc-a. Immunohistochemistry of muscle tissue samples showed a decrease in the immunostaining of type IV collagen after injection of BaP1, but not by leuc-a. Proteomic analysis by LC/MS/MS of exudates collected from injected muscle revealed higher amounts of perlecan, and types VI and XV collagens, in exudates from BaP1-injected tissue. The differences in the hemorrhagic activity of these SVMPs could be explained by their variable ability to degrade key BM and associated ECM substrates in vivo, particularly perlecan and several non-fibrillar collagens, which play a mechanical stabilizing role in microvessel structure. These results underscore the key role played by these ECM components in the mechanical stability of microvessels.
Asunto(s)
Capilares/efectos de los fármacos , Capilares/metabolismo , Colágeno/metabolismo , Venenos de Crotálidos/enzimología , Hemorragia/patología , Proteoglicanos de Heparán Sulfato/metabolismo , Metaloproteasas/farmacología , alfa-Globulinas/metabolismo , Animales , Membrana Basal/efectos de los fármacos , Membrana Basal/metabolismo , Western Blotting , Bothrops , Caseínas/metabolismo , Combinación de Medicamentos , Electroforesis en Gel de Poliacrilamida , Proteínas de la Matriz Extracelular/metabolismo , Exudados y Transudados , Hidrólisis/efectos de los fármacos , Inmunohistoquímica , Insulina/metabolismo , Laminina/metabolismo , Metaloendopeptidasas/farmacología , Ratones , Peso Molecular , Músculos/efectos de los fármacos , Músculos/patología , Proteoglicanos/metabolismo , Proteolisis/efectos de los fármacos , Proteómica , Heridas y Lesiones/patologíaRESUMEN
BACKGROUND: Multifunctional l-amino acid oxidases (LAAOs) occur widely in snake venoms. METHODS: The l-AAO from Bothrops leucurus (Bl-LAAO) venom was purified using a combination of molecular exclusion and ion-exchange chromatographies. We report some biochemical features of Bl-LAAO associated with its effect on platelet function and its cytotoxicity. RESULTS: Bl-LAAO is a 60kDa monomeric glycoprotein. Its N-terminal sequence shows high homology to other members of the snake-venom LAAO family. Bl-LAAO catalyzes oxidative deamination of l-amino acids with the generation of H2O2. The best substrates were: l-Met, l-Norleu, l-Leu, l-Phe and l-Trp. The effects of snake venom LAAOs in hemostasis, especially their action on platelet function remain largely unknown. Bl-LAAO dose-dependently inhibited platelet aggregation of both human PRP and washed platelets. Moreover, the purified enzyme exhibited a killing effect in vitro against Leishmania sp., promastigotes, with a very low EC(50) of 0.07µM. Furthermore, the cytotoxicity of Bl-LAAO was observed in the stomach cancer MKN-45, adeno carcinoma HUTU, colorectal RKO and human fibroblast LL-24 cell lines. The enzyme released enough H2O2 in culture medium to induce apoptosis in cells in a dose- and time-dependent manner. The biological effects were inhibited by catalase. CONCLUSION: Bl-LAAO, a major component of B. leucurus venom, is a cytotoxin acting primarily via the generation of high amounts of H2O2 which kill the cells. GENERAL SIGNIFICANCE: These results allow us to consider the use of LAAOs as anticancer agents, as tools in biochemical studies to investigate cellular processes, and to obtain a better understanding of the envenomation mechanism.
Asunto(s)
Apoptosis/efectos de los fármacos , L-Aminoácido Oxidasa/farmacología , Agregación Plaquetaria/efectos de los fármacos , Venenos de Serpiente/enzimología , Secuencia de Aminoácidos , Animales , Bothrops/metabolismo , Línea Celular , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Electroforesis en Gel Bidimensional , Estabilidad de Enzimas , Humanos , Peróxido de Hidrógeno/metabolismo , Concentración de Iones de Hidrógeno , L-Aminoácido Oxidasa/genética , L-Aminoácido Oxidasa/metabolismo , Leishmania braziliensis/efectos de los fármacos , Leishmania braziliensis/crecimiento & desarrollo , Datos de Secuencia Molecular , Especificidad por Sustrato , TemperaturaRESUMEN
Both serine and metalloproteinases have been shown to play the role of toxins in the venoms of many snakes. Determination of the natural protein substrates of these toxins is an important feature in the toxinological characterization of these proteinases. Furthermore, characterization of their peptide bond specificity is of value for understanding active site preference of the proteinase associated with effective proteolysis as well as of use in the design of peptide substrates and inhibitor lead compounds. Typically the determination of peptide bond cleavage specificity of snake venom serine proteinases (SVSPs) and snake venom metalloproteinases (SVMPs) has been performed using limited sets of peptides or small oligopeptides as experimental substrates. Although this approach has yielded valuable data it is generally limited in scope due to the relatively small sets of substrates used to generate the consensus specificity sequences for these proteinases. In this study we use a large, plasma based, proteome-derived peptide library as substrates along with mass spectrometry to explore the peptide bond specificity of three PI SVMPs and one PIII SVMP to determine their individual peptide cleavage consensus sequences. All of the proteinases assayed displayed a clear preference for a leucine residue in the P1' site. Careful analysis of the specificity profiles of the SVMPs examined showed interesting differences in the preferences at the other P and P' sites suggesting functional differences between these proteinases. The PI SVMPs, leucurolysin-a, atrolysin C, and BaP1, showed preferences across the full P4 to P4' range whereas the PIII SVMP bothropasin showed a narrower range of preferences across the sites. In silico docking experiments with the experimentally derived consensus sequences as well as with comparison of the results to those in the literature regarding peptide bond specificity based on both peptide and protein substrates give rise to a fresh understanding of the specificity of these SVMPS and may serve as a foundation for future experiments to better elucidate their mechanism of action in the complex pathophysiology of snakebite envenomation.