Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-22270637

RESUMEN

The Pfizer COVID-19 vaccine is associated with increased myocarditis incidence. Constantly evolving evidence regarding incidence and case fatality of COVID-19 and myocarditis related to infection or vaccination, creates challenge for risk-benefit analysis of vaccination programs. Challenges are complicated further by emerging evidence of waning vaccine effectiveness, and variable effectiveness against variants. Here, we build on previous work on the COVID-19 Risk Calculator (CoRiCal) by integrating Australian and international data to inform a Bayesian network that calculates probabilities of outcomes for the Delta variant under different scenarios of Pfizer COVID-19 vaccine coverage, age groups ([≤]12 years), sex, community transmission intensity and vaccine effectiveness. The model estimates that in a population where 5% were unvaccinated, 5% had one dose, 60% had two doses and 30% had three doses, the probabilities of developing and dying from COVID-19-related myocarditis were 239-5847 and 1430-384,684 times higher (depending on age and sex), respectively, than developing vaccine-associated myocarditis. For one million people with this vaccine coverage, where transmission intensity was equivalent to 10% chance of infection over two months, 68,813 symptomatic COVID-19 cases and 981 deaths would be prevented, with 42 and 16 expected cases of vaccine-associated myocarditis in males and females, respectively. The model may be updated to include emerging best evidence, data pertinent to different countries or vaccines, and other outcomes such as long COVID.

2.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-21265588

RESUMEN

Uncertainty surrounding the risk of developing and dying from Thrombosis and Thromobocytopenia Syndrome (TTS) associated with the AstraZeneca (AZ) COVID-19 vaccine may contribute to vaccine hesitancy. A model is urgently needed to combine and effectively communicate the existing evidence on the risks versus benefits of the AZ vaccine. We developed a Bayesian network to consolidate the existing evidence on risks and benefits of the AZ vaccine, and parameterised the model using data from a range of empirical studies, government reports, and expert advisory groups. Expert judgement was used to interpret the available evidence and determine the structure of the model, relevant variables, data to be included, and how these data were used to inform the model. The model can be used as a decision support tool to generate scenarios based on age, sex, virus variant and community transmission rates, making it a useful for individuals, clinicians, and researchers to assess the chances of different health outcomes. Model outputs include the risk of dying from TTS following the AZ COVID-19 vaccine, the risk of dying from COVID-19 or COVID-19-associated atypical severe blood clots under different scenarios. Although the model is focused on Australia, it can be easily adaptable to international settings by re-parameterising it with local data. This paper provides detailed description of the model-building methodology, which can used to expand the scope of the model to include other COVID-19 vaccines, booster doses, comorbidities and other health outcomes (e.g., long COVID) to ensure the model remains relevant in the face of constantly changing discussion on risks versus benefits of COVID-19 vaccination.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA