Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-33746361

RESUMEN

Nutrient pollution from livestock waste impacts both fresh and marine coastal waters. Harmful algae blooms (HABs) are a common ecosystem-level response to such pollution that is detrimental to both aquatic life and human health and that generates economic losses (e.g., property values and lost tourism). Waste treatment and management technologies are not well established practices due, in part, to the difficulty to attribute economic value to associated social and environmental impacts of nutrient pollution. In this work, we propose a computational framework to quantify the economic impacts of HABs. We demonstrate the advantage of quantifying these impacts through a case study on livestock waste management in the Upper Yahara watershed region (in the state of Wisconsin, USA). Our analysis reveals that every excess kilogram of phosphorus runoff from livestock waste results in total economic losses of 74.5 USD. Furthermore, we use a coordinated market analysis to demonstrate that this economic impact provides a strong enough incentive to activate a nutrient management and valorization market that can help balance phosphorus within the study area. The proposed framework can help state, tribes, and federal regulatory agencies develop regulatory and non-regulatory policies to mitigate the impacts of nutrient pollution.

2.
Comput Chem Eng ; 128: 352-363, 2019 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-32704194

RESUMEN

We propose a coordination framework for managing urban and rural organic waste in a scalable manner by orchestrating waste exchange, transportation, and transformation into value-added products. The framework is inspired by coordinated management systems that are currently used to operate power grids across the world and that have been instrumental in achieving high levels of efficiency and technological innovation. In the proposed framework, suppliers and consumers of waste and derived products as well as transportation and technology providers bid into a coordination system that is operated by an independent system operator. Allocations and prices for waste and derived products are obtained by the operator by solving a dispatch problem that maximizes the social welfare and that balances supply and demand across a given geographical region. Coordination enables handling of complex constraints and interdependencies that arise from transportation and bio-physico-chemical transformations of waste into products. We prove that the coordination system delivers prices and product allocations that satisfy economic and efficiency properties of a competitive market. The framework is scalable in that it can provide open access that fosters transactions between small and large players in urban and rural areas and over wide geographical regions. Moreover, the framework provides a systematic approach to enable coordinated responses to externalities such as droughts and extreme weather events, to monetize environmental impacts and remediation, to achieve complex social goals such as geographical nutrient balancing, and to justify technology investment and development efforts. Furthermore, the framework can facilitate coordination with electrical, natural gas, water, and transportation, and food distribution infrastructures.

3.
ACS Sustain Chem Eng ; 6(5): 6018-6031, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-31534867

RESUMEN

Livestock waste may cause some air quality degradation from ammonia and methane emissions, soil quality detriment due to in-excess nutrients and acidification, and water pollution issues resulting from nutrient and pathogens runoff to water bodies, which leads to eutrophication, algal blooms, and hypoxia. Despite the significant environmental benefits by performing pollution management of these organic materials, the recovery of value-added products from livestock waste is not a current practice due to the high investment costs required and to the low market values being offered for the products that are recovered. Therefore, we present a supply chain design framework to conduct simultaneous economic and environmental analysis of post-livestock organic material to value-added products. The proposed framework captures techno-economic and logistical issues and can accommodate diverse types of policy incentives obtained at federal and state levels, allowing stakeholders to conduct systematic studies on the effect of incentives on economic and environmental viability of different technologies. We apply the framework to a case study for dairy farms in the State of Wisconsin (U.S.). The framework reveals that, from a purely economic perspective, products recovered from dairy waste are not competitive at current market prices. We also find that incorporating current and potential U.S. government incentives in the form of Renewable Identification Numbers (RINs) and phosphorus credits can achieve economic viability of the recovery of liquefied biomethane and nutrient-rich products. On the other hand, current incentives for electricity generation (Renewable Energy Credits or RECs) would not achieve economic viability. The analysis also reveals that the best strategy to manage waste is to synergize the deployment of technologies that conduct simultaneous recovery of liquefied biomethane and nutrients.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA