RESUMEN
Riparins are alkamides naturally found in the fruits of Aniba riparia (Nees) Mez, but currently synthetic molecules as Riparin E (Rip-E) can be obtained. Potential biological of Rip-E as schistosomicidal agent against Schistosoma mansoni worms, as well as against Staphylococcus aureus strains has already been described. However, the mechanism of action related to antimicrobial activity of Rip-E against bacterial or fungi species has not yet been reported. This study had as objective to evaluate the Rip-E antimicrobial activity against Gram-positive and Gram-negative bacteria, as well as against yeast species of clinical importance. Minimal inhibitory concentrations of the compound against bacterial and yeast strains were determined by microdilution method. To verify if a possible lethal effect caused by Rip-E were related to plasma membrane damage, microbial cells treated with Rip-E were stained with 7-aminoactinomycin D (7-AAD) and analyzed by flow cytometry. Rip-E showed a bactericide effect against Gram-positive species S. aureus and S. epidermidis, as well as, against Gram-negative species Escherichia coli and Salmonella enterica Typhimurium, but was inactive against Pseudomonas aeruginosa. Moreover, Rip-E showed activity against fungi species Candida albicans and C. tropicalis. S. aureus, E. coli and C. albicans cells treated with Rip-E were marked with 7-aminoactinomycin D (7-AAD) indicating that Rip-E can cause plasma membrane damage, acting as a potential microbicide agent for prevention or treatment of infectious diseases.
Asunto(s)
Antibacterianos , Staphylococcus aureus , Antibacterianos/farmacología , Escherichia coli , Bacterias Gramnegativas , Bacterias Grampositivas , Pruebas de Sensibilidad MicrobianaRESUMEN
Staphylococcus aureus is responsible for a series of infections occurring in both human and animal hosts. S. aureus SA1199B is a strain resistant to hydrophilic fluoroquinolone due to overproduction of the NorA efflux pump that has been used as a microbial model to evaluate if a compound act as efflux pump inhibitor. Finding substances from natural or synthetic origin able to reverse resistance mechanisms like those of efflux pumps is a challenge. The use of Chalcones and their derivatives is of great chemical and pharmacological interest, as they present a simple structure and several pharmacological activities. This study aims to evaluate the antibacterial potential of 4 synthetic chalcones, as well as to evaluate their action in the modulation of Norfloxacin resistance against the strain SA1199B strain. Microdilution assays were performed for evaluation of the antimicrobial activity. For evaluation of the modulating effect on resistance to Norfloxacin or EtBr, MIC values of these compounds were determined in the absence or presence of subinhibitory concentrations used of each chalcone. MICs values of both Norfloxacin and EtBr were significantly reduced in the presence of all tested chalcones, indicating that inhibition of the active efflux of these compounds by NorA could be a possible mechanism of action of the chalcones. These results show that the compounds studied have a high potential as a NorA inhibitor, with the best modulating effect verified for the compound 3. Pharmacokinetic and toxicity predictive studies indicated a high intestinal absorption and good volume of distribution for chalcones by oral administration, activity in the central nervous system and ease to be transported between biological membranes. Emphasizing that analogs 1 and 4 were easily metabolized by CYP3A4 enzyme, constituting a pharmacological active ingredient without toxic risk due to metabolic activation. These chalcones combined with Norfloxacin could be a promise technological strategy to be applied in the treatment of infections caused by S. aureus overproducing NorA.
Asunto(s)
Chalcona , Chalconas , Animales , Antibacterianos/farmacología , Proteínas Bacterianas/metabolismo , Chalconas/farmacología , Humanos , Pruebas de Sensibilidad Microbiana , Proteínas Asociadas a Resistencia a Múltiples Medicamentos , Norfloxacino/farmacología , Staphylococcus aureus/metabolismoRESUMEN
The action of anxiolytic compounds that act on selective serotonin receptors (SSRIs) have been scarcely evaluated. Serotonergic drugs have been shown to be effective in treating anxiety without presenting adverse effects as benzodiazepines. However, the anxiolytic effects take days to occur. This study aimed to evaluate the anxiolytic effect of the synthetic chalcone, 4'-[(2E) -3- (3-nitrophenyl) -1- (phenyl) prop-2-en-1-one] acetamide (PAAMNBA), and its possible mechanism of action in adult zebrafish (Danio rerio). PAAMNBA was synthesized with a yield of 51.3% and its chemical structure was determined by 1H and 13C NMR. Initially, PAAPMNBA was intraperitoneally administered to zebrafish (n = 6/group) at doses of 4, 12, or 40 mg/kg, and the animals were subsequently subjected to acute and open field toxicity tests. PAAMNBA was administered to the other groups (n = 6/group) for analyzing its effect in the light and dark test. The involvement of the serotonergic (5HT) system was also evaluated using 5-HTR 1, 5-HTR 2A/2C, and 5-HTR 3A/3B receptor antagonists, namely, pizotifeo, granizetron, and ciproeptadina, respectively. Molecular coupling was performed using the 5-HT1 receptor. PAAMNBA was found to be non-toxic, reduced the locomotor activity, and had an anxiolytic effect in adult zebrafish. The effect was reduced by pretreatment with pizotifene and was not reversed by treatment with granizetron and cyproeptadine. A previous in vivo molecular coupling study indicated that chalcones interact with the 5-HT1 receptor. The results suggested that the chalcone, PAAPMNBA, has anxiolytic activity, that is mediated by the serotonergic system via the 5-HT1 receptor. The interaction of PAAPMNBA with the 5-HT1 receptor was confirmed by molecular docking studies.