Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Transl Psychiatry ; 8(1): 61, 2018 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-29531242

RESUMEN

Genetic, dietary, and inflammatory factors contribute to the etiology of major mood disorders (MMD), thus impeding the identification of specific biomarkers to assist in diagnosis and treatment. We tested association of vitamin D and inflammatory markers in 36 adolescents with bipolar disorder (BD) and major depressive disorder (MDD) forms of MMD and without MMD (non-mood control). We also assessed the overall level of inflammation using a cell-based reporter assay for nuclear factor kappa-B (NFκB) activation and measuring antibodies to oxidized LDL. We found that these factors were similar between non-mood and MMD youth. To identify potential biomarkers, we developed a screening immunoprecipitation-sequencing approach based on inflammatory brain glia maturation factor beta (GMFß). We discovered that a homolog of GMFß in human plasma is vitamin D-binding protein (DBP) and validated this finding using immunoprecipitation with anti-DBP antibodies and mass spectrometry/sequencing analysis. We quantified DBP levels in participants by western blot. DBP levels in BD participants were significantly higher (136%) than in participants without MMD (100%). The increase in DBP levels in MDD participants (121.1%) was not statistically different from these groups. The DBP responds early to cellular damage by binding of structural proteins and activating inflammatory cells. A product of enzymatic cleavage of DBP has been described as macrophage-activating factor. Circulating DBP is comprised of heterogenous high and low molecular fractions that are only partially recognized by mono- and polyclonal ELISA and are not suitable for the quantitative comparison of DBP in non-mood and MDD participants. Our data suggest DBP as a marker candidate of BD warranting its validation in a larger cohort of adolescent and adult MMD patients.


Asunto(s)
Trastorno Bipolar/sangre , Trastorno Depresivo Mayor/sangre , Inflamación/sangre , Proteína de Unión a Vitamina D/sangre , Vitamina D/sangre , Adolescente , Biomarcadores/sangre , Femenino , Humanos , Masculino
2.
Xenotransplantation ; 24(5)2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28718514

RESUMEN

BACKGROUND: Survival and longevity of xenotransplants depend on immune function and ability to integrate energy metabolism between cells from different species. However, mechanisms for interspecies cross talk in energy metabolism are not well understood. White adipose tissue stores energy and is capable of mobilization and dissipation of energy as heat (thermogenesis) by adipocytes expressing uncoupling protein 1 (Ucp1). Both pathways are under the control of vitamin A metabolizing enzymes. Deficient retinoic acid production in aldehyde dehydrogenase 1 A1 (Aldh1a1) knockout adipocytes (KO) inhibits adipogenesis and increases thermogenesis. Here we test the role Aldh1a1 in regulation of lipid metabolism in xenocultures. METHODS: Murine wide-type (WT) and KO pre-adipocytes were encapsulated into a poly-L-lysine polymer that allows exchange of humoral factors <32kD via nanopores. Encapsulated murine adipocytes were co-incubated with primary differentiated canine adipocytes. Then, expression of adipogenic and thermogenic genes in differentiated canine adipocytes was detected by real-time polymerase chain reaction (PCR). The regulatory factors in WT and KO cells were identified by comparison of secretome using proteomics and in transcriptome by gene microarray. RESULTS: Co-culture of encapsulated mouse KO vs WT adipocytes increased expression of peroxisome proliferator-activated receptor gamma (Pparg), but reduced expression of its target genes fatty acid binding protein 4 (Fabp4), and adipose triglyceride lipase (Atgl) in canine adipocytes, suggesting inhibition of PPARγ activation. Co-culture with KO adipocytes also induced expression of Ucp1 in canine adipocytes compared to expression in WT adipocytes. Cumulatively, murine KO compared to WT adipocytes decreased lipid accumulation in canine adipocytes. Comparative proteomics revealed significantly higher levels of vitamin A carriers, retinol binding protein 4 (RBP4), and lipokalin 2 (LCN2) in KO vs WT adipocytes. CONCLUSIONS: Our data demonstrate the functional exchange of regulatory factors between adipocytes from different species for regulation of energy balance. RBP4 and LCN2 appear to be involved in the transport of retinoids for regulation of lipid accumulation and thermogenesis in xenocultures. While the rarity of thermogenic adipocytes in humans and dogs precludes their use for autologous transplantation, our study demonstrates that xenotransplantation of engineered cells could be a potential solution for the reduction in obesity in dogs and a strategy for translation to patients.


Asunto(s)
Adipocitos/metabolismo , Metabolismo Energético/fisiología , Isoenzimas/metabolismo , Obesidad/terapia , Retinal-Deshidrogenasa/metabolismo , Adipogénesis/fisiología , Familia de Aldehído Deshidrogenasa 1 , Animales , Diferenciación Celular/fisiología , Perros , Ratones , Termogénesis/fisiología , Trasplante Heterólogo/métodos , Vitamina A/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA