Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Magn Reson Med ; 44(1): 35-40, 2000 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-10893519

RESUMEN

Previous MRS measurements of ethanol in human brain have yielded a range of transverse relaxation times for ethanol methyl resonance at 1.5 T (200-380 ms). To determine the T(2) of the methyl proton resonance of ethanol in human brain, 8 x 8 spectroscopic images were acquired at 16 different TE values. A frequency-selective refocusing pulse was used to suppress J-modulation of the ethanol triplet, permitting nonintegral multiples of 1/J to be used for TE values. The measured T(2) values for the methyl resonances of ethanol, creatine, and N-acetyl aspartate in mixed tissues were 82 +/- 12, 148 +/- 20, and 227 +/- 25 ms, respectively. Regression analysis of the measured T(2) as a function of gray matter content indicates a shorter T(2) value for ethanol in pure white matter compared to that in pure gray matter. Magn Reson Med 44:35-40, 2000.


Asunto(s)
Encéfalo/metabolismo , Etanol/metabolismo , Espectroscopía de Resonancia Magnética , Adulto , Humanos , Procesamiento de Imagen Asistido por Computador , Modelos Lineales , Masculino , Persona de Mediana Edad
2.
Magn Reson Med ; 42(2): 345-60, 1999 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-10440960

RESUMEN

Two different types of (co-registered) images of the same slice of tissue will generally have different spatial resolutions. The judicious pixel-by-pixel combination of their data can be accomplished to yield a single image exhibiting properties of both. Here, axial (18)FDG PET and (1)H(2)O MR images of the human brain are used as the low- and high-resolution members of the pair. A color scale is necessary in order to provide for separate intensity parameters from the two image types. However, not all color scales can accommodate this separability. The HSV color model allows one to choose a color scale in which the intensity of the low-resolution image type is coded as hue, while that of the high-resolution type is coded as value, a reasonably independent parameter. Furthermore, the high-resolution image must have high contrast and be quantitative in the same sense as the low-resolution image almost always is. Here, relaxographic MR images (naturally segmented quantitative (1)H(2)O spin-density components) are used. Their essentially complete contrast serves to effect an apparent editing function when encoded as the value of the color scale. Thus, the combination of (18)FDG PET images with gray-matter (GM) relaxographic (1)H(2)O images produces visually "GM-edited" (18)FDG PETAMR (positron emission tomography and magnetic resonance) images. These exhibit the high sensitivity to tracer amounts characteristic of PET along with the high spatial resolution of (1)H(2)O MRI. At the same time, however, they retain the complete quantitative measures of each of their basis images. Magn Reson Med 42:345-360, 1999. Published 1999 Wiley-Liss, Inc.


Asunto(s)
Encéfalo/anatomía & histología , Encéfalo/diagnóstico por imagen , Aumento de la Imagen/métodos , Imagen por Resonancia Magnética/métodos , Tomografía Computarizada de Emisión/métodos , Adulto , Encéfalo/metabolismo , Color , Desoxiglucosa/metabolismo , Femenino , Humanos , Masculino
3.
J Magn Reson ; 136(1): 102-13, 1999 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-9887295

RESUMEN

We have investigated the theoretical and experimental linear dependence of the reciprocal of the apparent longitudinal relaxation time [(T*1)-1] of the NMR signal from spins in a flowing fluid on the volume flow rate, Fv, the so-called inflow effect. We refer to the coefficient of this dependence as the longitudinal flow relaxivity, r1F. A very simple model predicts that, under a range of conditions pertinent to modern flow studies and perfusion imaging experiments, r1F is controlled by the volume of the fluid in which the magnetization is perturbed by pulsed RF inversion or saturation, not the detection volume, and that it can be approximated as the reciprocal of half of the inversion volume. Phantom sample experiments, using a new, quantitative approach that we call flow relaxography, confirm the general predictions of this simple model. There are two intriguing implications of these findings for general NMR flow studies as well as for medical applications. It should be possible to vary the value of r1F by simply (noninvasively) adjusting the inversion slice thickness, and thus measure the value of (blood 1H2O, for example) Fv in a vessel without changing Fv, from the resultant varying T*1 values. Also, it should be possible to extrapolate to the intrinsic T1 value of the fluid signal (as if it were stationary), without altering or stopping the flow. Again, these are quite successful in phantom sample studies. Imaging versions of the flow relaxographic experiments are also possible. The twin goals of flow studies in medical MRI are the quantitative discrimination of the signals from flowing and nonflowing spins, and the accurate measurement of the flow rate of the former.


Asunto(s)
Espectroscopía de Resonancia Magnética/métodos , Fantasmas de Imagen , Velocidad del Flujo Sanguíneo , Análisis de Fourier , Modelos Teóricos , Reproducibilidad de los Resultados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA