Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 4273, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38769103

RESUMEN

Sex-specific traits and behaviors emerge during development by the acquisition of unique properties in the nervous system of each sex. However, the genetic events responsible for introducing these sex-specific features remain poorly understood. In this study, we create a comprehensive gene expression atlas of pure populations of hermaphrodites and males of the nematode Caenorhabditis elegans across development. We discover numerous differentially expressed genes, including neuronal gene families like transcription factors, neuropeptides, and G protein-coupled receptors. We identify INS-39, an insulin-like peptide, as a prominent male-biased gene expressed specifically in ciliated sensory neurons. We show that INS-39 serves as an early-stage male marker, facilitating the effective isolation of males in high-throughput experiments. Through complex and sex-specific regulation, ins-39 plays pleiotropic sexually dimorphic roles in various behaviors, while also playing a shared, dimorphic role in early life stress. This study offers a comparative sexual and developmental gene expression database for C. elegans. Furthermore, it highlights conserved genes that may underlie the sexually dimorphic manifestation of different human diseases.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Regulación del Desarrollo de la Expresión Génica , Redes Reguladoras de Genes , Caracteres Sexuales , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/crecimiento & desarrollo , Caenorhabditis elegans/metabolismo , Masculino , Femenino , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Neuropéptidos/genética , Neuropéptidos/metabolismo , Células Receptoras Sensoriales/metabolismo , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Perfilación de la Expresión Génica
2.
PLoS Genet ; 19(11): e1011061, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38032985

RESUMEN

[This corrects the article DOI: 10.1371/journal.pgen.1004747.].

3.
Nat Commun ; 14(1): 7066, 2023 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-37923706

RESUMEN

Molecular chaperones are essential cellular components that aid in protein folding and preventing the abnormal aggregation of disease-associated proteins. Mutations in one such chaperone, DNAJB6, were identified in patients with LGMDD1, a dominant autosomal disorder characterized by myofibrillar degeneration and accumulations of aggregated protein within myocytes. The molecular mechanisms through which such mutations cause this dysfunction, however, are not well understood. Here we employ a combination of solution NMR and biochemical assays to investigate the structural and functional changes in LGMDD1 mutants of DNAJB6. Surprisingly, we find that DNAJB6 disease mutants show no reduction in their aggregation-prevention activity in vitro, and instead differ structurally from the WT protein, affecting their interaction with Hsp70 chaperones. While WT DNAJB6 contains a helical element regulating its ability to bind and activate Hsp70, in LGMDD1 disease mutants this regulation is disrupted. These variants can thus recruit and hyperactivate Hsp70 chaperones in an unregulated manner, depleting Hsp70 levels in myocytes, and resulting in the disruption of proteostasis. Interfering with DNAJB6-Hsp70 binding, however, reverses the disease phenotype, suggesting future therapeutic avenues for LGMDD1.


Asunto(s)
Mutación con Ganancia de Función , Chaperonas Moleculares , Humanos , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Proteínas del Choque Térmico HSP40/metabolismo , Proteínas HSP70 de Choque Térmico/genética , Proteínas HSP70 de Choque Térmico/metabolismo , Pliegue de Proteína , Proteínas del Tejido Nervioso/genética
4.
Curr Opin Neurobiol ; 82: 102757, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37572555

RESUMEN

Many animal behaviors are manifested differently in the two sexes of a given species, but how such sexual dimorphism is imprinted in the nervous system is not always clear. One mechanism involved is synaptic dimorphism, by which the same neurons exist in the two sexes, but form synapses that differ in features such as anatomy, molecular content or fate. While some evidence for synaptic dimorphism exists in humans and mammals, identifying these mechanisms in invertebrates has proven simpler, due to their smaller nervous systems and absence of external regulation by sex hormones. This review aims to present the current status of the field in invertebrates, the available toolkit for the study of synaptic dimorphism, and the standing questions that still remain incompletely answered.


Asunto(s)
Invertebrados , Caracteres Sexuales , Animales , Humanos , Neuronas/fisiología , Sinapsis/fisiología , Mamíferos
5.
Nat Commun ; 13(1): 6825, 2022 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-36369281

RESUMEN

How sensory perception is processed by the two sexes of an organism is still only partially understood. Despite some evidence for sexual dimorphism in auditory and olfactory perception, whether touch is sensed in a dimorphic manner has not been addressed. Here we find that the neuronal circuit for tail mechanosensation in C. elegans is wired differently in the two sexes and employs a different combination of sex-shared sensory neurons and interneurons in each sex. Reverse genetic screens uncovered cell- and sex-specific functions of the alpha-tubulin mec-12 and the sodium channel tmc-1 in sensory neurons, and of the glutamate receptors nmr-1 and glr-1 in interneurons, revealing the underlying molecular mechanisms that mediate tail mechanosensation. Moreover, we show that only in males, the sex-shared interneuron AVG is strongly activated by tail mechanical stimulation, and accordingly is crucial for their behavioral response. Importantly, sex reversal experiments demonstrate that the sexual identity of AVG determines both the behavioral output of the mechanosensory response and the molecular pathways controlling it. Our results present extensive sexual dimorphism in a mechanosensory circuit at both the cellular and molecular levels.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animales , Masculino , Femenino , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Interneuronas/metabolismo , Células Receptoras Sensoriales/metabolismo , Caracteres Sexuales , Canales Iónicos/genética , Canales Iónicos/metabolismo
6.
Curr Biol ; 32(20): 4372-4385.e7, 2022 10 24.
Artículo en Inglés | MEDLINE | ID: mdl-36075218

RESUMEN

The effect of the detailed connectivity of a neural circuit on its function and the resulting behavior of the organism is a key question in many neural systems. Here, we study the circuit for nociception in C. elegans, which is composed of the same neurons in the two sexes that are wired differently. We show that the nociceptive sensory neurons respond similarly in the two sexes, yet the animals display sexually dimorphic behaviors to the same aversive stimuli. To uncover the role of the downstream network topology in shaping behavior, we learn and simulate network models that replicate the observed dimorphic behaviors and use them to predict simple network rewirings that would switch behavior between the sexes. We then show experimentally that these subtle synaptic rewirings indeed flip behavior. Interestingly, when presented with aversive cues, rewired males were compromised in finding mating partners, suggesting that network topologies that enable efficient avoidance of noxious cues have a reproductive "cost." Our results present a deconstruction of the design of a neural circuit that controls sexual behavior and how to reprogram it.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animales , Masculino , Caenorhabditis elegans/fisiología , Proteínas de Caenorhabditis elegans/fisiología , Nocicepción , Sistema Nervioso , Células Receptoras Sensoriales/fisiología
7.
Elife ; 102021 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-34477553

RESUMEN

Understanding the molecular events that regulate cell pluripotency versus acquisition of differentiated somatic cell fate is fundamentally important. Studies in Caenorhabditis elegans demonstrate that knockout of the germline-specific translation repressor gld-1 causes germ cells within tumorous gonads to form germline-derived teratoma. Previously we demonstrated that endoplasmic reticulum (ER) stress enhances this phenotype to suppress germline tumor progression(Levi-Ferber et al., 2015). Here, we identify a neuronal circuit that non-autonomously suppresses germline differentiation and show that it communicates with the gonad via the neurotransmitter serotonin to limit somatic differentiation of the tumorous germline. ER stress controls this circuit through regulated inositol requiring enzyme-1 (IRE-1)-dependent mRNA decay of transcripts encoding the neuropeptide FLP-6. Depletion of FLP-6 disrupts the circuit's integrity and hence its ability to prevent somatic-fate acquisition by germline tumor cells. Our findings reveal mechanistically how ER stress enhances ectopic germline differentiation and demonstrate that regulated Ire1-dependent decay can affect animal physiology by controlling a specific neuronal circuit.


Asunto(s)
Caenorhabditis elegans/fisiología , Diferenciación Celular/fisiología , Células Germinativas/fisiología , Neuronas/fisiología , Animales , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Caspasas , Estrés del Retículo Endoplásmico/fisiología , Gónadas , Proteínas Serina-Treonina Quinasas/metabolismo , Estabilidad del ARN
8.
Curr Top Dev Biol ; 144: 245-268, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33992155

RESUMEN

Sex-specific behaviors are common in nature and are crucial for reproductive fitness and species survival. A key question in the field of sex/gender neurobiology is whether and to what degree the sex-shared nervous system differs between the sexes in the anatomy, connectivity and molecular identity of its components. An equally intriguing issue is how does the same sex-shared neuronal template diverge to mediate distinct behavioral outputs in females and males. This chapter aims to present the most up-to-date understanding of how this task is achieved in C. elegans. The vast majority of neurons in C. elegans are shared among the two sexes in terms of their lineage history, anatomical position and neuronal identity. Yet a substantial amount of evidence points to the hermaphrodite-male counterparts of some neurons expressing different genes and forming different synaptic connections. This, in turn, enables the same cells and circuits to transmit discrete signals in the two sexes and ultimately execute different functions. We review the various sex-shared behavioral paradigms that have been shown to be sexually dimorphic in recent years, discuss the mechanisms that underlie these examples, refer to the developmental regulation of neuronal dimorphism and suggest evolutionary concepts that emerge from the data.


Asunto(s)
Caenorhabditis elegans , Sistema Nervioso , Caracteres Sexuales , Animales , Caenorhabditis elegans/genética , Femenino , Aptitud Genética , Masculino , Neurobiología , Neuronas
9.
Curr Biol ; 30(21): 4128-4141.e5, 2020 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-32857970

RESUMEN

Sexually dimorphic circuits underlie behavioral differences between the sexes, yet the molecular mechanisms involved in their formation are poorly understood. We show here that sexually dimorphic connectivity patterns arise in C. elegans through local ubiquitin-mediated protein degradation in selected synapses of one sex but not the other. Specifically, synaptic degradation occurs via binding of the evolutionary conserved E3 ligase SEL-10/FBW7 to a phosphodegron binding site of the netrin receptor UNC-40/DCC (Deleted in Colorectal Cancer), resulting in degradation of UNC-40. In animals carrying an undegradable unc-40 gain-of-function allele, synapses were retained in both sexes, compromising the activity of the circuit without affecting neurite guidance. Thus, by decoupling the synaptic and guidance functions of the netrin pathway, we reveal a critical role for dimorphic protein degradation in controlling neuronal connectivity and activity. Additionally, the interaction between SEL-10 and UNC-40 is necessary not only for sex-specific synapse pruning, but also for other synaptic functions. These findings provide insight into the mechanisms that generate sex-specific differences in neuronal connectivity, activity, and function.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Moléculas de Adhesión Celular/metabolismo , Proteínas de Ciclo Celular/metabolismo , Caracteres Sexuales , Sinapsis/metabolismo , Transmisión Sináptica/fisiología , Alelos , Animales , Animales Modificados Genéticamente , Axones/metabolismo , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/genética , Moléculas de Adhesión Celular/genética , Mutación con Ganancia de Función , Masculino , Proteolisis , Ubiquitinación/genética
10.
Elife ; 92020 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-32213289

RESUMEN

How lifespan and the rate of aging are set is a key problem in biology. Small RNAs are conserved molecules that impact diverse biological processes through the control of gene expression. However, in contrast to miRNAs, the role of endo-siRNAs in aging remains unexplored. Here, by combining deep sequencing and genomic and genetic approaches in Caenorhabditis elegans, we reveal an unprecedented role for endo-siRNA molecules in the maintenance of proteostasis and lifespan extension in germline-less animals. Furthermore, we identify an endo-siRNA-regulated tyrosine phosphatase, which limits the longevity of germline-less animals by restricting the activity of the heat shock transcription factor HSF-1. Altogether, our findings point to endo-siRNAs as a link between germline removal and the HSF-1 proteostasis and longevity-promoting somatic pathway. This establishes a role for endo siRNAs in the aging process and identifies downstream genes and physiological processes that are regulated by the endo siRNAs to affect longevity.


Asunto(s)
Caenorhabditis elegans/fisiología , Células Germinativas/fisiología , Longevidad/fisiología , Proteostasis/fisiología , ARN Interferente Pequeño/fisiología , Animales , Proteínas de Caenorhabditis elegans/fisiología , Respuesta al Choque Térmico , Proteínas Tirosina Fosfatasas/genética , Proteínas Tirosina Fosfatasas/fisiología , Factores de Transcripción/fisiología
11.
Elife ; 82019 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-30694177

RESUMEN

Dendritic arbors are crucial for nervous system assembly, but the intracellular mechanisms that govern their assembly remain incompletely understood. Here, we show that the dendrites of PVD neurons in Caenorhabditis elegans are patterned by distinct pathways downstream of the DMA-1 leucine-rich transmembrane (LRR-TM) receptor. DMA-1/LRR-TM interacts through a PDZ ligand motif with the guanine nucleotide exchange factor TIAM-1/GEF in a complex with act-4/Actin to pattern higher order 4° dendrite branches by localizing F-actin to the distal ends of developing dendrites. Surprisingly, TIAM-1/GEF appears to function independently of Rac1 guanine nucleotide exchange factor activity. A partially redundant pathway, dependent on HPO-30/Claudin, regulates formation of 2° and 3° branches, possibly by regulating membrane localization and trafficking of DMA-1/LRR-TM. Collectively, our experiments suggest that HPO-30/Claudin localizes the DMA-1/LRR-TM receptor on PVD dendrites, which in turn can control dendrite patterning by directly modulating F-actin dynamics through TIAM-1/GEF.


Asunto(s)
Actinas/genética , Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/genética , Proteínas de la Membrana/genética , Plasticidad Neuronal/genética , Proteína 1 de Invasión e Inducción de Metástasis del Linfoma-T/genética , Actinas/metabolismo , Animales , Caenorhabditis elegans/citología , Caenorhabditis elegans/crecimiento & desarrollo , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Claudinas/genética , Claudinas/metabolismo , Regulación de la Expresión Génica , Proteínas de la Membrana/metabolismo , Sistema Nervioso/citología , Sistema Nervioso/crecimiento & desarrollo , Sistema Nervioso/metabolismo , Neurogénesis/genética , Neuronas/citología , Neuronas/metabolismo , Dominios PDZ , Unión Proteica , Transporte de Proteínas , Transmisión Sináptica , Proteína 1 de Invasión e Inducción de Metástasis del Linfoma-T/metabolismo , Proteína de Unión al GTP rac1/genética , Proteína de Unión al GTP rac1/metabolismo
12.
PLoS Genet ; 13(1): e1006579, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-28114319

RESUMEN

Neurons receive excitatory or sensory inputs through their dendrites, which often branch extensively to form unique neuron-specific structures. How neurons regulate the formation of their particular arbor is only partially understood. In genetic screens using the multidendritic arbor of PVD somatosensory neurons in the nematode Caenorhabditis elegans, we identified a mutation in the ER stress sensor IRE-1/Ire1 (inositol requiring enzyme 1) as crucial for proper PVD dendrite arborization in vivo. We further found that regulation of dendrite growth in cultured rat hippocampal neurons depends on Ire1 function, showing an evolutionarily conserved role for IRE-1/Ire1 in dendrite patterning. PVD neurons of nematodes lacking ire-1 display reduced arbor complexity, whereas mutations in genes encoding other ER stress sensors displayed normal PVD dendrites, specifying IRE-1 as a selective ER stress sensor that is essential for PVD dendrite morphogenesis. Although structure function analyses indicated that IRE-1's nuclease activity is necessary for its role in dendrite morphogenesis, mutations in xbp-1, the best-known target of non-canonical splicing by IRE-1/Ire1, do not exhibit PVD phenotypes. We further determined that secretion and distal localization to dendrites of the DMA-1/leucine rich transmembrane receptor (DMA-1/LRR-TM) is defective in ire-1 but not xbp-1 mutants, suggesting a block in the secretory pathway. Interestingly, reducing Insulin/IGF1 signaling can bypass the secretory block and restore normal targeting of DMA-1, and consequently normal PVD arborization even in the complete absence of functional IRE-1. This bypass of ire-1 requires the DAF-16/FOXO transcription factor. In sum, our work identifies a conserved role for ire-1 in neuronal branching, which is independent of xbp-1, and suggests that arborization defects associated with neuronal pathologies may be overcome by reducing Insulin/IGF signaling and improving ER homeostasis and function.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Dendritas/metabolismo , Insulina/metabolismo , Neurogénesis , Proteínas Serina-Treonina Quinasas/metabolismo , Receptores de Somatomedina/metabolismo , Transducción de Señal , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/crecimiento & desarrollo , Proteínas de Caenorhabditis elegans/genética , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Células Cultivadas , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Ratas
13.
Genes Dev ; 30(23): 2607-2622, 2016 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-28007784

RESUMEN

The Runx3 transcription factor is essential for development and diversification of the dorsal root ganglia (DRGs) TrkC sensory neurons. In Runx3-deficient mice, developing TrkC neurons fail to extend central and peripheral afferents, leading to cell death and disruption of the stretch reflex circuit, resulting in severe limb ataxia. Despite its central role, the mechanisms underlying the spatiotemporal expression specificities of Runx3 in TrkC neurons were largely unknown. Here we first defined the genomic transcription unit encompassing regulatory elements (REs) that mediate the tissue-specific expression of Runx3. Using transgenic mice expressing BAC reporters spanning the Runx3 locus, we discovered three REs-dubbed R1, R2, and R3-that cross-talk with promoter-2 (P2) to drive TrkC neuron-specific Runx3 transcription. Deletion of single or multiple elements either in the BAC transgenics or by CRISPR/Cas9-mediated endogenous ablation established the REs' ability to promote and/or repress Runx3 expression in developing sensory neurons. Our analysis reveals that an intricate combinatorial interplay among the three REs governs Runx3 expression in distinct subtypes of TrkC neurons while concomitantly extinguishing its expression in non-TrkC neurons. These findings provide insights into the mechanism regulating cell type-specific expression and subtype diversification of TrkC neurons in developing DRGs.


Asunto(s)
Subunidad alfa 3 del Factor de Unión al Sitio Principal/genética , Ganglios Espinales/embriología , Regulación del Desarrollo de la Expresión Génica/genética , Neuronas/metabolismo , Elementos Reguladores de la Transcripción/genética , Animales , Ataxia/genética , Sitios de Unión , Subunidad alfa 3 del Factor de Unión al Sitio Principal/metabolismo , Embrión de Mamíferos , Ganglios Espinales/citología , Eliminación de Gen , Locomoción/genética , Masculino , Ratones , Ratones Transgénicos , Neuronas/citología , Regiones Promotoras Genéticas/genética , Unión Proteica , Factores de Transcripción/metabolismo
15.
Curr Biol ; 26(17): 2379-87, 2016 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-27451901

RESUMEN

Sensory dendrite arbors are patterned through cell-autonomously and non-cell-autonomously functioning factors [1-3]. Yet, only a few non-cell-autonomously acting proteins have been identified, including semaphorins [4, 5], brain-derived neurotrophic factors (BDNFs) [6], UNC-6/Netrin [7], and the conserved MNR-1/Menorin-SAX-7/L1CAM cell adhesion complex [8, 9]. This complex acts from the skin to pattern the stereotypic dendritic arbors of PVD and FLP somatosensory neurons in Caenorhabditis elegans through the leucine-rich transmembrane receptor DMA-1/LRR-TM expressed on PVD neurons [8, 9]. Here we describe a role for the diffusible C. elegans protein LECT-2, which is homologous to vertebrate leukocyte cell-derived chemotaxin 2 (LECT2)/Chondromodulin II. LECT2/Chondromodulin II has been implicated in a variety of pathological conditions [10-13], but the developmental functions of LECT2 have remained elusive. We find that LECT-2/Chondromodulin II is required for development of PVD and FLP dendritic arbors and can act as a diffusible cue from a distance to shape dendritic arbors. Expressed in body-wall muscles, LECT-2 decorates neuronal processes and hypodermal cells in a pattern similar to the cell adhesion molecule SAX-7/L1CAM. LECT-2 functions genetically downstream of the MNR-1/Menorin-SAX-7/L1CAM adhesion complex and upstream of the DMA-1 receptor. LECT-2 localization is dependent on SAX-7/L1CAM, but not on MNR-1/Menorin or DMA-1/LRR-TM, suggesting that LECT-2 functions as part of the skin-derived MNR-1/Menorin-SAX-7/L1CAM adhesion complex. Collectively, our findings suggest that LECT-2/Chondromodulin II acts as a muscle-derived, diffusible cofactor together with a skin-derived cell adhesion complex to orchestrate the molecular interactions of three tissues during patterning of somatosensory dendrites.


Asunto(s)
Tipificación del Cuerpo , Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/fisiología , Factores Quimiotácticos/genética , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Caenorhabditis elegans/embriología , Caenorhabditis elegans/genética , Caenorhabditis elegans/crecimiento & desarrollo , Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/metabolismo , Factores Quimiotácticos/química , Factores Quimiotácticos/metabolismo , Señales (Psicología) , Dendritas/fisiología , Larva/genética , Larva/crecimiento & desarrollo , Larva/fisiología , Músculos/metabolismo , Alineación de Secuencia , Piel/metabolismo
16.
PLoS Genet ; 10(10): e1004747, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25340700

RESUMEN

The C. elegans germline is pluripotent and mitotic, similar to self-renewing mammalian tissues. Apoptosis is triggered as part of the normal oogenesis program, and is increased in response to various stresses. Here, we examined the effect of endoplasmic reticulum (ER) stress on apoptosis in the C. elegans germline. We demonstrate that pharmacological or genetic induction of ER stress enhances germline apoptosis. This process is mediated by the ER stress response sensor IRE-1, but is independent of its canonical downstream target XBP-1. We further demonstrate that ire-1-dependent apoptosis in the germline requires both CEP-1/p53 and the same canonical apoptotic genes as DNA damage-induced germline apoptosis. Strikingly, we find that activation of ire-1, specifically in the ASI neurons, but not in germ cells, is sufficient to induce apoptosis in the germline. This implies that ER stress related germline apoptosis can be determined at the organism level, and is a result of active IRE-1 signaling in neurons. Altogether, our findings uncover ire-1 as a novel cell non-autonomous regulator of germ cell apoptosis, linking ER homeostasis in sensory neurons and germ cell fate.


Asunto(s)
Proteínas de Caenorhabditis elegans/genética , Diferenciación Celular/genética , Neuronas/citología , Proteínas Serina-Treonina Quinasas/genética , Transducción de Señal , Animales , Apoptosis/genética , Caenorhabditis elegans , Proteínas Portadoras/genética , Daño del ADN/genética , Estrés del Retículo Endoplásmico/genética , Células Germinativas/crecimiento & desarrollo , Gónadas/crecimiento & desarrollo
17.
PLoS Genet ; 10(9): e1004657, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25232734

RESUMEN

Animals sample their environment through sensory neurons with often elaborately branched endings named dendritic arbors. In a genetic screen for genes involved in the development of the highly arborized somatosensory PVD neuron in C. elegans, we have identified mutations in kpc-1, which encodes the homolog of the proprotein convertase furin. We show that kpc-1/furin is necessary to promote the formation of higher order dendritic branches in PVD and to ensure self-avoidance of sister branches, but is likely not required during maintenance of dendritic arbors. A reporter for kpc-1/furin is expressed in neurons (including PVD) and kpc-1/furin can function cell-autonomously in PVD neurons to control patterning of dendritic arbors. Moreover, we show that kpc-1/furin also regulates the development of other neurons in all major neuronal classes in C. elegans, including aspects of branching and extension of neurites as well as cell positioning. Our data suggest that these developmental functions require proteolytic activity of KPC-1/furin. Recently, the skin-derived MNR-1/menorin and the neural cell adhesion molecule SAX-7/L1CAM have been shown to act as a tripartite complex with the leucine rich transmembrane receptor DMA-1 on PVD mechanosensory to orchestrate the patterning of dendritic branches. Genetic analyses show that kpc-1/furin functions in a pathway with MNR-1/menorin, SAX-7/L1CAM and DMA-1 to control dendritic branch formation and extension of PVD neurons. We propose that KPC-1/furin acts in concert with the 'menorin' pathway to control branching and growth of somatosensory dendrites in PVD.


Asunto(s)
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/fisiología , Dendritas/metabolismo , Furina/genética , Células Receptoras Sensoriales/metabolismo , Secuencia de Aminoácidos , Animales , Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/metabolismo , Furina/química , Furina/metabolismo , Datos de Secuencia Molecular , Mutación , Fenotipo , Alineación de Secuencia
18.
Cell ; 155(2): 308-20, 2013 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-24120132

RESUMEN

Sensory dendrites depend on cues from their environment to pattern their growth and direct them toward their correct target tissues. Yet, little is known about dendrite-substrate interactions during dendrite morphogenesis. Here, we describe MNR-1/menorin, which is part of the conserved Fam151 family of proteins and is expressed in the skin to control the elaboration of "menorah"-like dendrites of mechanosensory neurons in Caenorhabditis elegans. We provide biochemical and genetic evidence that MNR-1 acts as a contact-dependent or short-range cue in concert with the neural cell adhesion molecule SAX-7/L1CAM in the skin and through the neuronal leucine-rich repeat transmembrane receptor DMA-1 on sensory dendrites. Our data describe an unknown pathway that provides spatial information from the skin substrate to pattern sensory dendrite development nonautonomously.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Dendritas/metabolismo , Proteínas de la Membrana/metabolismo , Neuronas/metabolismo , Secuencia de Aminoácidos , Animales , Proteínas de Caenorhabditis elegans/genética , Clonación Molecular , Técnicas de Silenciamiento del Gen , Proteínas de la Membrana/genética , Datos de Secuencia Molecular , Alineación de Secuencia
19.
Dev Biol ; 338(2): 158-67, 2010 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-20004656

RESUMEN

Meig1 is a mouse gene, abundantly expressed in the testis. It encodes two alternative transcripts that are expressed differentially in the somatic and germinal compartments of the testis. These transcripts share the same coding region but differ in their 5' un-translated regions, due to alternative promoters. Here we show that MEIG1 is a highly conserved short metazoan protein with a conserved core of 81 residues. It is present from chordates to radial symmetry animals, with an intriguing absence in insects and nematodes. It is also present in two earlier diverging protist lineages. To elucidate the role of MEIG1 during gamete production we established a knockout mouse line by eliminating the common coding region. Our results identified Meig1 as a critical spermatogenic gene, whose absence results in complete male infertility. Seminiferous tubules in Meig1-null males contained all early stages of spermatogenesis, up to elongating spermatids, but mature elongated spermatids were absent. Accordingly, the caudal epididymis was apparently missing spermatozoa, and the very few spermatozoa-like cells that were obtained were immotile and exhibited a wide range of severe morphological abnormalities. These results point at late spermiogenesis as the differentiative stage at which MEIG1's function is crucial. Nevertheless, delayed kinetics of earlier meiotic stages together with increased apoptosis of meiotic spermatocytes and haploid round spermadids in Meig1 knockout males, suggest involvement of MEIG1 in meiotic stages as well.


Asunto(s)
Proteínas de Ciclo Celular/fisiología , Proteínas Nucleares/deficiencia , Proteínas Nucleares/fisiología , Fosfoproteínas/deficiencia , Fosfoproteínas/fisiología , Espermatogénesis , Animales , Secuencia Conservada , Infertilidad/genética , Masculino , Meiosis , Ratones , Ratones Noqueados , Filogenia , Túbulos Seminíferos , Espermátides , Espermatocitos
20.
J Biol Chem ; 277(38): 35274-81, 2002 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-12077121

RESUMEN

The OS-9 gene maps to a region (q13-15) of chromosome 12 that is highly amplified in human osteosarcomas and encodes a protein of unknown function. Here we have characterized a homolog designated as YOS9 (YDR057w) from Saccharomyces cerevisiae. The yeast protein (Yos9) is a membrane-associated glycoprotein that localizes to the endoplasmic reticulum (ER). YOS9 interacts genetically with genes involved in ER-Golgi transport, particularly SEC34, whose temperature-sensitive mutant is rescued by YOS9 overexpression. Interestingly, Yos9 appears to play a direct role in the transport of glycosylphosphatidylinositol (GPI)-anchored proteins to the Golgi apparatus. Yos9 binds directly to Gas1 and Mkc7 and accelerates Gas1 transport and processing in cells overexpressing YOS9. Correspondingly, Gas1 processing is slowed in cells bearing a deletion in YOS9. No effect upon the transport and processing of non-GPI-anchored proteins (e.g. invertase and carboxypeptidase Y) was detected in cells either lacking or overexpressing Yos9. As Yos9 is not a component of the Emp24 complex, it may act as a novel escort factor for GPI-anchored proteins in ER-Golgi transport in yeast and possibly in mammals.


Asunto(s)
Retículo Endoplásmico/metabolismo , Amplificación de Genes , Genes Fúngicos , Glicosilfosfatidilinositoles/metabolismo , Aparato de Golgi/metabolismo , Osteosarcoma/genética , Saccharomyces cerevisiae/genética , Secuencia de Aminoácidos , Secuencia de Bases , Secuencia Conservada , Cartilla de ADN , Evolución Molecular , Técnica del Anticuerpo Fluorescente , Datos de Secuencia Molecular , Pruebas de Precipitina , Desnaturalización Proteica , Transporte de Proteínas , Homología de Secuencia de Aminoácido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA