Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Front Oncol ; 14: 1422942, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39148908

RESUMEN

Background: Ensuring accurate polyp detection during colonoscopy is essential for preventing colorectal cancer (CRC). Recent advances in deep learning-based computer-aided detection (CADe) systems have shown promise in enhancing endoscopists' performances. Effective CADe systems must achieve high polyp detection rates from the initial seconds of polyp appearance while maintaining low false positive (FP) detection rates throughout the procedure. Method: We integrated four open-access datasets into a unified platform containing over 340,000 images from various centers, including 380 annotated polyps, with distinct data splits for comprehensive model development and benchmarking. The REAL-Colon dataset, comprising 60 full-procedure colonoscopy videos from six centers, is used as the fifth dataset of the platform to simulate clinical conditions for model evaluation on unseen center data. Performance assessment includes traditional object detection metrics and new metrics that better meet clinical needs. Specifically, by defining detection events as sequences of consecutive detections, we compute per-polyp recall at early detection stages and average per-patient FPs, enabling the generation of Free-Response Receiver Operating Characteristic (FROC) curves. Results: Using YOLOv7, we trained and tested several models across the proposed data splits, showcasing the robustness of our open-access platform for CADe system development and benchmarking. The introduction of new metrics allows for the optimization of CADe operational parameters based on clinically relevant criteria, such as per-patient FPs and early polyp detection. Our findings also reveal that omitting full-procedure videos leads to non-realistic assessments and that detecting small polyp bounding boxes poses the greatest challenge. Conclusion: This study demonstrates how newly available open-access data supports ongoing research progress in environments that closely mimic clinical settings. The introduced metrics and FROC curves illustrate CADe clinical efficacy and can aid in tuning CADe hyperparameters.

2.
Sci Data ; 11(1): 539, 2024 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-38796533

RESUMEN

Detection and diagnosis of colon polyps are key to preventing colorectal cancer. Recent evidence suggests that AI-based computer-aided detection (CADe) and computer-aided diagnosis (CADx) systems can enhance endoscopists' performance and boost colonoscopy effectiveness. However, most available public datasets primarily consist of still images or video clips, often at a down-sampled resolution, and do not accurately represent real-world colonoscopy procedures. We introduce the REAL-Colon (Real-world multi-center Endoscopy Annotated video Library) dataset: a compilation of 2.7 M native video frames from sixty full-resolution, real-world colonoscopy recordings across multiple centers. The dataset contains 350k bounding-box annotations, each created under the supervision of expert gastroenterologists. Comprehensive patient clinical data, colonoscopy acquisition information, and polyp histopathological information are also included in each video. With its unprecedented size, quality, and heterogeneity, the REAL-Colon dataset is a unique resource for researchers and developers aiming to advance AI research in colonoscopy. Its openness and transparency facilitate rigorous and reproducible research, fostering the development and benchmarking of more accurate and reliable colonoscopy-related algorithms and models.


Asunto(s)
Pólipos del Colon , Colonoscopía , Colonoscopía/métodos , Humanos , Pólipos del Colon/diagnóstico , Diagnóstico por Computador , Inteligencia Artificial , Grabación en Video , Neoplasias Colorrectales/diagnóstico
4.
NPJ Digit Med ; 5(1): 84, 2022 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-35773468

RESUMEN

Accurate in-vivo optical characterization of colorectal polyps is key to select the optimal treatment regimen during colonoscopy. However, reported accuracies vary widely among endoscopists. We developed a novel intelligent medical device able to seamlessly operate in real-time using conventional white light (WL) endoscopy video stream without virtual chromoendoscopy (blue light, BL). In this work, we evaluated the standalone performance of this computer-aided diagnosis device (CADx) on a prospectively acquired dataset of unaltered colonoscopy videos. An international group of endoscopists performed optical characterization of each polyp acquired in a prospective study, blinded to both histology and CADx result, by means of an online platform enabling careful video assessment. Colorectal polyps were categorized by reviewers, subdivided into 10 experts and 11 non-experts endoscopists, and by the CADx as either "adenoma" or "non-adenoma". A total of 513 polyps from 165 patients were assessed. CADx accuracy in WL was found comparable to the accuracy of expert endoscopists (CADxWL/Exp; OR 1.211 [0.766-1.915]) using histopathology as the reference standard. Moreover, CADx accuracy in WL was found superior to the accuracy of non-expert endoscopists (CADxWL/NonExp; OR 1.875 [1.191-2.953]), and CADx accuracy in BL was found comparable to it (CADxBL/CADxWL; OR 0.886 [0.612-1.282]). The proposed intelligent device shows the potential to support non-expert endoscopists in systematically reaching the performances of expert endoscopists in optical characterization.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA