Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Cell Mol Life Sci ; 81(1): 348, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39136766

RESUMEN

The biological clock in eukaryotes controls daily rhythms in physiology and behavior. It displays a complex organization that involves the molecular transcriptional clock and the redox oscillator which may coordinately work to control cellular rhythms. The redox oscillator has emerged very early in evolution in adaptation to the environmental changes in O2 levels and has been shown to regulate daily rhythms in glycerolipid (GL) metabolism in different eukaryotic cells. GLs are key components of lipid droplets (LDs), intracellular storage organelles, present in all living organisms, and essential for energy and lipid homeostasis regulation and survival; however, the cell bioenergetics status is not constant across time and depends on energy demands. Thus, the formation and degradation of LDs may reflect a time-dependent process following energy requirements. This work investigated the presence of metabolic rhythms in LD content along evolution by studying prokaryotic and eukaryotic cells and organisms. We found sustained temporal oscillations in LD content in Pseudomonas aeruginosa bacteria and Caenorhabditis elegans synchronized by temperature cycles, in serum-shock synchronized human embryonic kidney cells (HEK 293 cells) and brain tumor cells (T98G and GL26) after a dexamethasone pulse. Moreover, in synchronized T98G cells, LD oscillations were altered by glycogen synthase kinase-3 (GSK-3) inhibition that affects the cytosolic activity of the metabolic oscillator or by knocking down LIPIN-1, a key GL synthesizing enzyme. Overall, our findings reveal the existence of metabolic oscillations in terms of LD content highly conserved across evolutionary scales notwithstanding variations in complexity, regulation, and cell organization.


Asunto(s)
Caenorhabditis elegans , Gotas Lipídicas , Pseudomonas aeruginosa , Humanos , Gotas Lipídicas/metabolismo , Animales , Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/genética , Células HEK293 , Pseudomonas aeruginosa/metabolismo , Pseudomonas aeruginosa/genética , Relojes Biológicos/genética , Evolución Biológica , Metabolismo de los Lípidos/genética , Ritmo Circadiano/genética , Ritmo Circadiano/fisiología
3.
Redox Biol ; 71: 103074, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38367511

RESUMEN

Brain iron accumulation constitutes a pathognomonic indicator in several neurodegenerative disorders. Metal accumulation associated with dopaminergic neuronal death has been documented in Parkinson's disease. Through the use of in vivo and in vitro models, we demonstrated that lipid dysregulation manifests as a neuronal and glial response during iron overload. In this study, we show that cholesterol content and triacylglycerol (TAG) hydrolysis were strongly elevated in mice midbrain. Lipid cacostasis was concomitant with the loss of dopaminergic neurons, astrogliosis and elevated expression of α-synuclein. Exacerbated lipid peroxidation and markers of ferroptosis were evident in the midbrain from mice challenged with iron overload. An imbalance in the activity of lipolytic and acylation enzymes was identified, favoring neutral lipid hydrolysis, and consequently reducing TAG and cholesteryl ester levels. Notably, these observed alterations were accompanied by motor impairment in iron-treated mice. In addition, neuronal and glial cultures along with their secretomes were used to gain further insight into the mechanism underlying TAG hydrolysis and cholesterol accumulation as cellular responses to iron accumulation. We demonstrated that TAG hydrolysis in neurons is triggered by astrocyte secretomes. Moreover, we found that the ferroptosis inhibitor, ferrostatin-1, effectively prevents cholesterol accumulation both in neurons and astrocytes. Taken together, these results indicate that lipid disturbances occur in iron-overloaded mice as a consequence of iron-induced oxidative stress and depend on neuron-glia crosstalk. Our findings suggest that developing therapies aimed at restoring lipid homeostasis may lead to specific treatment for neurodegeneration associated with ferroptosis and brain iron accumulation.


Asunto(s)
Ferroptosis , Sobrecarga de Hierro , Trastornos Motores , Ratones , Animales , Metabolismo de los Lípidos , Trastornos Motores/metabolismo , Hierro/metabolismo , Peroxidación de Lípido , Neuronas Dopaminérgicas/metabolismo , Colesterol/metabolismo , Lípidos
4.
Rev. enferm. atenção saúde ; 13(1): 202405, nov. - mar. 2024. tab
Artículo en Inglés, Español, Portugués | BDENF - Enfermería | ID: biblio-1568425

RESUMEN

Objetivo: Avaliar os níveis de resiliência, qualidade de vida (QV), ansiedade e depressão de trabalhadores de radioterapia após pandemia por COVID-19. Método: Estudo transversal, realizado com 49 trabalhadores de três hospitais oncológicos. Aplicou-se quatro questionários a partir de uma survey enviada por mensagem. Para análise dos resultados, utilizou-se estatística descritiva, testes de comparação, bem como Modelos de Regressão Linear e Logística. Resultados: Os trabalhadores apresentavam níveis moderados a elevados de ansiedade e QV e 28,6% apresentavam depressão. Participantes casados foram relacionados a melhores níveis de ansiedade e QV, sendo que quem tinha filhos apresentavam 3,57 vezes mais chance de ter alta resiliência. Conclusão: Pode-se observar altos níveis de resiliência, QV e menor presença de ansiedade e depressão nos participantes. Ações voltadas para avaliação contínua e melhorias da saúde mental dos trabalhadores em radioterapia são necessárias para evitar novos casos de burnout e aumento do número afastamento entre esses profissionais (AU).


Objective: To assess the levels of resilience, quality of life (QoL), anxiety and depression of radiotherapy workers after the COVID-19 pandemic. Method: Cross-sectional study, carried out with 49 workers from three oncological hospitals. Four questionnaires were applied from a survey sent by message. For the analysis of the results, descriptive statistics, comparison tests, and Linear and Logistic Regression Models were used. Results: Workers had moderate to high levels of anxiety and QoL and 28.6% had depression. Married participants were related to better levels of anxiety and QoL, and those who had children were 3.57 times more likely to have high resilience. Conclusion: High levels of resilience, QoL and lower presence of anxiety and depression can be observed. Actions aimed at continuous assessment and improvements in mental health of radiotherapy workers are necessary to avoid new cases of burnout and an increase in the number of days off work (AU).


Objetivo: Evaluar los niveles de resiliencia, calidad de vida (CV), ansiedad y depresión de trabajadores de radioterapia tras la pandemia de COVID-19. Método: Estudio transversal con 49 trabajadores de tres hospitales oncológicos. Se aplicaron cuatro cuestionarios enviados por mensaje. Para el análisis se utilizó estadística descriptiva, pruebas de comparación, así como Modelos de Regresión Lineal y Logística. Resultados: Los trabajadores tenían niveles moderados/altos de ansiedad y CV y el 28,6% tenía depresión. Los participantes casados se relacionaron con mejores niveles de ansiedad y CV, y los que tenían hijos tenían 3,57 veces más probabilidades de tener resiliencia alta. Conclusión: Se observan altos niveles de resiliencia, CV y menor presencia de ansiedad y depresión. Son necesarias acciones encaminadas a la evaluación continua y la mejora de la salud mental de los trabajadores de radioterapia para evitar nuevos casos de burnout y un aumento del número de días de baja laboral (AU).


Asunto(s)
Humanos , Masculino , Femenino , Adulto , Adulto Joven , Radioterapia , Salud Mental , Salud Laboral , COVID-19 , Ansiedad , Calidad de Vida , Depresión
5.
Microbiol Res ; 274: 127435, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37331053

RESUMEN

Soybean-maize are cultivated in different management systems, such as no-tillage and pastures, which presents potential to add organic residues, and it can potentially impacts the soil microbial community present in these systems. Thus, this study aimed to examine the effects of different soybean-maize management practices on the diversity and composition of soil microbial communities. Specifically, 16 S rRNA amplicon sequencing was used to investigate whether the use of pasture species in a fallowing system influences microbial communities in a soybean-maize rotation system, as compared to conventional tillage and no-tillage systems. The results indicate that the inclusion of the pasture species Urochloa brizantha in soybean-maize management systems leads to distinct responses within the soil microbial community. It was found that different soybean-maize management systems, particularly those with U. brizantha, affected the microbial community, likely due to the management applied to this pasture species. The system with 3 years of fallowing before soybean-maize showed the lowest microbial richness (∼2000 operational taxonomic units) and diversity index (∼6.0). Proteobacteria (∼30%), Acidobacteria (∼15%), and Verrucomicrobia (∼10%) were found to be the most abundant phyla in the soil under tropical native vegetation, while soils under cropland had an increased abundance of Firmicutes (∼30% to ∼50%) and Actinobacteria (∼30% to ∼35%). To summarize, this study identified the impacts of various soybean-maize management practices on the soil microbial community and emphasized the advantages of adding U. brizantha as a fallow species.


Asunto(s)
Microbiota , Suelo , Suelo/química , Zea mays/microbiología , Glycine max , Microbiología del Suelo
6.
Pract Radiat Oncol ; 12(4): e286-e295, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35462055

RESUMEN

PURPOSE: This study evaluated the toxicity associated with a short course dose-escalated hypofractionated radiation therapy (HFRT) using image guided RT with or without androgen suppression therapy in patients with prostate cancer. METHODS AND MATERIALS: This single-center prospective observational study included 132 patients with prostate cancer from 2016 to 2020. Patients received HFRT using image guided RT (84%) with 3-dimensional (91%) or intensity modulated RT (9%). Total prescribed doses were 66 Gy (63%), 63 Gy (12%), and 60 Gy (24%) in 22, 21, or 20 daily fractions depending on organ-at-risk dose constraints. Acute toxicity was scored using Radiation Therapy Oncology Group criteria and the international prostate symptom index. The expanded prostate cancer index composite questionnaire was used to collect quality of life data (ranging from 0-100). RESULTS: The study population consisted of 111 patients who completed RT during a period of 3 years. The risk groups were as follows: low risk (12%), intermediate (32%), and high (56%). None of the patients had suspicious lymph nodes. Ninety percent received androgen suppression therapy. Maximum acute genitourinary and gastrointestinal toxicity peaked at grade 3 in 4 of 111 evaluated patients (4%) and at grade 2 in 7 of 111 evaluated patients (8%), respectively. The average international prostate symptom score increased from 4.8 at pretreatment to 14.0 during week 4 and normalized (5.7) 3 months after treatment completion. CONCLUSIONS: The current HFRT dose-escalation trial has demonstrated the feasibility of administering 66 Gy in 22 fractions with low acute gastrointestinal and genitourinary toxicities. Further follow-up will report late toxicities and outcomes.


Asunto(s)
Neoplasias de la Próstata , Radioterapia de Intensidad Modulada , Andrógenos/uso terapéutico , Brasil , Atención a la Salud , Fraccionamiento de la Dosis de Radiación , Humanos , Masculino , Neoplasias de la Próstata/patología , Calidad de Vida , Hipofraccionamiento de la Dosis de Radiación , Radioterapia de Intensidad Modulada/efectos adversos , Radioterapia de Intensidad Modulada/métodos
7.
Mol Neurobiol ; 59(1): 326-353, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34697790

RESUMEN

Along evolution, living organisms developed a precise timekeeping system, circadian clocks, to adapt life to the 24-h light/dark cycle and temporally regulate physiology and behavior. The transcriptional molecular circadian clock and metabolic/redox oscillator conforming these clocks are present in organs, tissues, and even in individual cells, where they exert circadian control over cellular metabolism. Disruption of the molecular clock may cause metabolic disorders and higher cancer risk. The synthesis and degradation of glycerophospholipids (GPLs) is one of the most highly regulated metabolisms across the 24-h cycle in terms of total lipid content and enzyme expression and activity in the nervous system and individual cells. Lipids play a plethora of roles (membrane biogenesis, energy sourcing, signaling, and the regulation of protein-chromatin interaction, among others), making control of their metabolism a vital checkpoint in the cellular organization of physiology. An increasing body of evidence clearly demonstrates an orchestrated and sequential series of events occurring in GPL metabolism across the 24-h day in diverse retinal cell layers, immortalized fibroblasts, and glioma cells. Moreover, the clock gene Per1 and other circadian-related genes are tightly involved in the regulation of GPL synthesis in quiescent cells. However, under proliferation, the metabolic oscillator continues to control GPL metabolism of brain cancer cells even after molecular circadian clock disruption, reflecting the crucial role of the temporal metabolism organization in cell preservation. The aim of this review is to examine the control exerted by circadian clocks over GPL metabolism, their synthesizing enzyme expression and activities in normal and tumorous cells of the nervous system and in immortalized fibroblasts.


Asunto(s)
Ritmo Circadiano/fisiología , Fibroblastos/metabolismo , Glicerofosfolípidos/metabolismo , Metabolismo de los Lípidos/fisiología , Neuronas/metabolismo , Animales , Relojes Circadianos/fisiología , Humanos
8.
Cell Death Dis ; 12(1): 52, 2021 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-33414430

RESUMEN

α-synuclein (α-syn) accumulation and aggregation is a common pathological factor found in synucleinopathies, a group of neurodegenerative disorders that includes Parkinson´s disease (PD). It has been proposed that lipid dyshomeostasis is responsible for the occurrence of PD-related processes, however, the precise role of lipids in the onset and progression of neurodegenerative disorders remains unclear. Our aim was to investigate the effect of α-syn overexpression on neutral lipid metabolism and how this impacts on neuronal fate. We found lipid droplet (LD) accumulation in cells overexpressing α-syn to be associated with a rise in triacylglycerol (TAG) and cholesteryl ester (CE) levels. α-syn overexpression promoted diacylglycerol acyltransferase 2 upregulation and acyl-CoA synthetase activation, triggering TAG buildup, that was accompanied by an increase in diacylglycerol acylation. Moreover, the CE increment was associated with higher activity of acyl-CoA:cholesterol acyltransferase. Interestingly, α-syn overexpression increased cholesterol lysosomal accumulation. We observed that sterol regulatory element-binding protein (SREBP)-1 and SREBP-2 were differentially regulated by α-syn overexpression. The latter gave rise to a reduction in SREBP-1 nuclear translocation and consequently in fatty acid synthase expression, whereas it produced an increase in SREBP-2 nuclear localization. Surprisingly, and despite increased cholesterol levels, SREBP-2 downstream genes related to cholesterolgenesis were not upregulated as expected. Notably, phospholipid (PL) levels were diminished in cells overexpressing α-syn. This decrease was related to the activation of phospholipase A2 (PLA2) with a concomitant imbalance of the PL deacylation-acylation cycle. Fatty acids released from PLs by iPLA2 and cPLA2 action were esterified into TAGs, thus promoting a biological response to α-syn overexpression with uncompromised cell viability. When the described steady-state was disturbed under conditions favoring higher levels of α-syn, the response was an enhanced LD accumulation, this imbalance ultimately leading to neuronal death.


Asunto(s)
Biomarcadores/metabolismo , Metabolismo de los Lípidos/fisiología , alfa-Sinucleína/metabolismo , Animales , Humanos , Ratones
9.
Heliyon ; 6(10): e05149, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33072916

RESUMEN

Our previous reports showed that 1α,25-dihydroxyvitamin D3 (1α,25(OH)2D3) has antiproliferative actions in endothelial cells stably expressing viral G protein-coupled receptor (vGPCR) associated with the pathogenesis of Kaposi's sarcoma. It has been reported that COX-2 enzyme, involved in the tumorigenesis of many types of cancers, is induced by vGPCR. Therefore, we investigated whether COX-2 down-regulation is part of the growth inhibitory effects of 1α,25(OH)2D3. Proliferation was measured in presence of COX-2 inhibitor Celecoxib (10-20 µM) revealing a decreased in vGPCR cell number, displaying typically apoptotic features in a dose dependent manner similarly to 1α,25(OH)2D3. In addition, the reduced cell viability observed with 20 µM Celecoxib was enhanced in presence of 1α,25(OH)2D3. Remarkably, although COX-2 mRNA and protein levels were up-regulated after 1α,25(OH)2D3 treatment, COX-2 enzymatic activity was reduced in a VDR-dependent manner. Furthermore, an interaction between COX-2 and VDR was revealed through GST pull-down and computational analysis. Additionally, high-affinity prostanoid receptors (EP3 and EP4) were found down-regulated by 1α,25(OH)2D3. Altogether, these results suggest a down-regulation of COX-2 activity and of prostanoid receptors as part of the antineoplastic mechanism of 1α,25(OH)2D3 in endothelial cells transformed by vGPCR.

11.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1865(10): 158767, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32736090

RESUMEN

The presence, biosynthesis and functional role of sterols in the green microalga Haematococcus pluvialis remain poorly understood. In this work we studied the effect of high-light (HL) stress on sterol synthesis in H. pluvialis UTEX 2505 cells. HL stress induced the synthesis of sterols in parallel with that of triacylglycerides (TAG), giving rise to the synthesis of cholesterol over that of phytosterols. Blockage of the carotenogenic 1-deoxy-D-xylulose 5-phosphate (MEP) pathway is shown to be involved in HL-induced sterol synthesis. In addition, high irradiance exposure induced MEP- and fatty acid (FA)-biosynthetic transcripts. The pharmacological inhibition of these pathways suggests a possible feedback regulation of sterol and FA homeostasis. Finally, both lipid classes proved crucial to the adequate photosynthetic performance of H. pluvialis grown under HL intensity stress. Our findings reveal new insights into H. pluvialis lipid metabolism that contribute to the development of value-added bioproducts from microalgae.


Asunto(s)
Metabolismo de los Lípidos/efectos de la radiación , Lípidos/genética , Fotosíntesis/genética , Esteroles/metabolismo , Ácidos Grasos/genética , Ácidos Grasos/metabolismo , Luz , Metabolismo de los Lípidos/genética , Microalgas/genética , Microalgas/metabolismo , Microalgas/efectos de la radiación , Fotosíntesis/efectos de la radiación , Estrés Fisiológico/genética , Estrés Fisiológico/efectos de la radiación , Xantófilas/metabolismo , Xantófilas/efectos de la radiación
12.
Toxicol In Vitro ; 60: 400-411, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31247335

RESUMEN

Neuronal exposure to 6-hydroxydopamine (6-OHDA), a hydroxylated analog of dopamine, constitutes a very useful strategy for studying the molecular events associated with neuronal death in Parkinson's disease. 6-OHDA increases oxidant levels and impairs mitochondrial respiratory chain, thus promoting neuronal injury and death. Despite the extensive use of 6-OHDA in animal models, the exact molecular events triggered by this neurotoxicant at the neuronal level have not been yet fully understood. Human IMR-32 neuroblastoma cells exposed to increasing concentrations of 6-OHDA displayed high levels of reactive oxygen species and increased plasma membrane permeability with concomitant cell viability diminution. As part of the neuronal response to 6-OHDA exposure, the nuclear translocation of nuclear factor kappa-light-chain-enhancer of activated B cells (NFκB) p65 subunit was observed. NFκB nuclear localization was also accompanied by an increase of IκB phosphorylation as well as a rise in cyclooxygenase-2 (COX-2) and the prostaglandin receptor, EP4, mRNA levels. Even though the canonical pathways participating in the modulation of NFκB have been extensively described, here we tested the hypothesis that 6-OHDA-induced injury can activate lipid signaling and, in turn, modulate the transcriptional response. 6-OHDA challenge triggered the activation of lipid signaling pathways and increased phosphatidic acid (PA), diacylglycerol and free fatty acid levels in human neuroblastoma cells. The inhibition of PA production was able to prevent the decrease in cell viability triggered by 6-OHDA, the nuclear translocation of NFκB p65 subunit and the rise in COX-2 mRNA expression. Our results indicate that the onset of the inflammatory process triggered by 6-OHDA involves the activation of PA signaling that, in turn, governs NFκB subcellular localization and COX-2 expression.


Asunto(s)
Adrenérgicos/toxicidad , FN-kappa B/metabolismo , Oxidopamina/toxicidad , Línea Celular , Supervivencia Celular/efectos de los fármacos , Ciclooxigenasa 2/genética , Dopamina/metabolismo , Humanos , Neuronas/efectos de los fármacos , Síndromes de Neurotoxicidad , Subtipo EP4 de Receptores de Prostaglandina E/genética
13.
Front Cell Neurosci ; 13: 175, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31118888

RESUMEN

Since its discovery, the study of the biological role of α-synuclein and its pathological implications has been the subject of increasing interest. The propensity to adopt different conformational states governing its aggregation and fibrillation makes this small 14-kDa cytosolic protein one of the main etiologic factors associated with degenerative disorders known as synucleinopathies. The structure, function, and toxicity of α-synuclein and the possibility of different therapeutic approaches to target the protein have been extensively investigated and reviewed. One intriguing characteristic of α-synuclein is the different ways in which it interacts with lipids. Though in-depth studies have been carried out in this field, the information they have produced is puzzling and the precise role of lipids in α-synuclein biology and pathology and vice versa is still largely unknown. Here we provide an overview and discussion of the main findings relating to α-synuclein/lipid interaction and its involvement in the modulation of lipid metabolism and signaling.

14.
Exp Eye Res ; 184: 243-257, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31059692

RESUMEN

Chronic hyperglycemia, oxidative stress and inflammation are key players in the pathogenesis of diabetic retinopathy (DR). In this work we study the role of phospholipase D (PLD) pathway in an in vitro model of high glucose (HG)-induced damage. To this end, we exposed human retinal pigment epithelium (RPE) cell lines (ARPE-19 and D407) to HG concentrations (16.5 or 33 mM) or to normal glucose concentration (NG, 5.5 mM) for 4, 24 or 72 h. Exposure to HG increased reactive oxygen species levels and caspase-3 cleavage and reduced cell viability after 72 h of incubation. In addition, short term HG exposure (4 h) induced the activation of early events, that involve PLD and ERK1/2 signaling, nuclear factor kappa B (NFκB) nuclear translocation and IκB phosphorylation. The increment in pro-inflammatory interleukins (IL-6 and IL-8) and cyclooxygenase-2 (COX-2) mRNA levels was observed after 24 h of HG exposure. The effect of selective pharmacological PLD1 (VU0359595) and PLD2 (VU0285655-1) inhibitors demonstrated that ERK1/2 and NFκB activation were downstream events of both PLD isoforms. The increment in IL-6 and COX-2 mRNA levels induced by HG was reduced to control levels in cells pre-incubated with both PLD inhibitors. Furthermore, the inhibition of PLD1, PLD2 and MEK/ERK pathway prevented the loss of cell viability and the activation of caspase-3 induced by HG. In conclusion, our findings demonstrate that PLD1 and PLD2 mediate the inflammatory response triggered by HG in RPE cells, pointing to their potential use as a therapeutic target for DR treatment.


Asunto(s)
Retinopatía Diabética/metabolismo , Glucosa/farmacología , Fosfolipasa D/metabolismo , Epitelio Pigmentado de la Retina/efectos de los fármacos , Western Blotting , Caspasa 3/metabolismo , Línea Celular , Ciclooxigenasa 2/genética , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Humanos , Interleucina-6/genética , Interleucina-8/genética , Microscopía Confocal , Microscopía Fluorescente , Estrés Oxidativo , Fosforilación , Proteínas Serina-Treonina Quinasas/metabolismo , ARN Mensajero/genética , Especies Reactivas de Oxígeno/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Epitelio Pigmentado de la Retina/metabolismo , Quinasa de Factor Nuclear kappa B
15.
Mol Neurobiol ; 56(2): 1276-1292, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29881948

RESUMEN

Even in immortalized cell lines, circadian clocks regulate physiological processes in a time-dependent manner, driving transcriptional and metabolic rhythms, the latter being able to persist without transcription. Circadian rhythm disruptions in modern life (shiftwork, jetlag, etc.) may lead to higher cancer risk. Here, we investigated whether the human glioblastoma T98G cells maintained quiescent or under proliferation keep a functional clock and whether cells display differential time responses to bortezomib chemotherapy. In arrested cultures, mRNAs for clock (Per1, Rev-erbα) and glycerophospholipid (GPL)-synthesizing enzyme genes, 32P-GPL labeling, and enzyme activities exhibited circadian rhythmicity; oscillations were also found in the redox state/peroxiredoxin oxidation. In proliferating cells, rhythms of gene expression were lost or their periodicity shortened whereas the redox and GPL metabolisms continued to fluctuate with a similar periodicity as under arrest. Cell viability significantly changed over time after bortezomib treatment; however, this rhythmicity and the redox cycles were altered after Bmal1 knock-down, indicating cross-talk between the transcriptional and the metabolic oscillators. An intrinsic metabolic clock continues to function in proliferating cells, controlling diverse metabolisms and highlighting differential states of tumor suitability for more efficient, time-dependent chemotherapy when the redox state is high and GPL metabolism low.


Asunto(s)
Antineoplásicos/farmacología , Bortezomib/farmacología , Proliferación Celular/efectos de los fármacos , Relojes Circadianos/efectos de los fármacos , Glioblastoma/metabolismo , Neuronas/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/fisiología , Relojes Circadianos/fisiología , Glioblastoma/genética , Humanos , Neuronas/metabolismo , Estrés Oxidativo/efectos de los fármacos , Estrés Oxidativo/fisiología , Fosforilación
16.
Arch Biochem Biophys ; 655: 43-54, 2018 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-30098984

RESUMEN

Pathological α-synuclein (α-syn) overexpression and iron (Fe)-induced oxidative stress (OS) are involved in the death of dopaminergic neurons in Parkinson's disease (PD). We have previously characterized the role of triacylglycerol (TAG) formation in the neuronal response to Fe-induced OS. In this work we characterize the role of the α-syn variant A53T during Fe-induced injury and investigate whether lipid metabolism has implications for neuronal fate. To this end, we used the N27 dopaminergic neuronal cell line either untransfected (UT) or stably transfected with pcDNA3 vector (as a transfection control) or pcDNA-A53T-α-syn (A53T α-syn). The overexpression of A53T α-syn triggered an increase in TAG content mainly due to the activation of Acyl-CoA synthetase. Since fatty acid (FA) ß-oxidation and phospholipid content did not change in A53T α-syn cells, the unique consequence of the increase in FA-CoA derivatives was their acylation in TAG moieties. Control cells exposed to Fe-induced injury displayed increased OS markers and TAG content. Intriguingly, Fe exposure in A53T α-syn cells promoted a decrease in OS markers accompanied by α-syn aggregation and elevated TAG content. We report here new evidence of a differential role played by A53T α-syn in neuronal lipid metabolism as related to the neuronal response to OS.


Asunto(s)
Hierro/toxicidad , Neuronas/metabolismo , alfa-Sinucleína/metabolismo , Animales , Línea Celular , Supervivencia Celular/genética , Gotas Lipídicas/metabolismo , Mutación , Neuronas/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Ratas , Especies Reactivas de Oxígeno/metabolismo , Transfección/métodos , Triglicéridos/metabolismo , alfa-Sinucleína/genética
17.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1863(6): 639-650, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29571767

RESUMEN

We have previously shown that phospholipase D (PLD) pathways have a role in neuronal degeneration; in particular, we found that PLD activation is associated with synaptic injury induced by oxidative stress. In the present study, we investigated the effect of α-synuclein (α-syn) overexpression on PLD signaling. Wild Type (WT) α-syn was found to trigger the inhibition of PLD1 expression as well as a decrease in ERK1/2 phosphorylation and expression levels. Moreover, ERK1/2 subcellular localization was shown to be modulated by WT α-syn in a PLD1-dependent manner. Indeed, PLD1 inhibition was found to alter the neurofilament network and F-actin distribution regardless of the presence of WT α-syn. In line with this, neuroblastoma cells expressing WT α-syn exhibited a degenerative-like phenotype characterized by a marked reduction in neurofilament light subunit (NFL) expression and the rearrangement of the F-actin organization, compared with either the untransfected or the empty vector-transfected cells. The gain of function of PLD1 through the overexpression of its active form had the effect of restoring NFL expression in WT α-syn neurons. Taken together, our findings reveal an unforeseen role for α-syn in PLD regulation: PLD1 downregulation may constitute an early mechanism in the initial stages of WT α-syn-triggered neurodegeneration.


Asunto(s)
Regulación hacia Abajo , Regulación Enzimológica de la Expresión Génica , Enfermedad de Parkinson/metabolismo , Fosfolipasa D/biosíntesis , alfa-Sinucleína/metabolismo , Línea Celular Tumoral , Mutación con Ganancia de Función , Humanos , Filamentos Intermedios/genética , Filamentos Intermedios/metabolismo , Proteína Quinasa 1 Activada por Mitógenos/genética , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/genética , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/patología , Fosfolipasa D/genética , alfa-Sinucleína/genética
18.
Oxid Med Cell Longev ; 2018: 2850341, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29581821

RESUMEN

Iron overload is a hallmark of many neurodegenerative processes such as Alzheimer's, Parkinson's, and Huntington's diseases. Unbound iron accumulated as a consequence of brain aging is highly reactive with water and oxygen and produces reactive oxygen species (ROS) or free radicals. ROS are toxic compounds able to damage cell membranes, DNA, and mitochondria. Which are the mechanisms involved in neuronal iron homeostasis and in neuronal response to iron-induced oxidative stress constitutes a cutting-edge topic in metalloneurobiology. Increasing our knowledge about the underlying mechanisms that operate in iron accumulation and their consequences would shed light on the comprehension of the molecular events that participate in the pathophysiology of the abovementioned neurodegenerative diseases. In this review, current evidences about iron accumulation in the brain, the signaling mechanisms triggered by metal overload, as well as the interaction between amyloid ß (Aß) and iron, will be summarized.


Asunto(s)
Péptidos beta-Amiloides/metabolismo , Hierro/metabolismo , Humanos , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/fisiopatología , Estrés Oxidativo
19.
Naunyn Schmiedebergs Arch Pharmacol ; 390(12): 1229-1238, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28875231

RESUMEN

The development of hybrids from natural products is a promising strategy for drug discovery. In cancer therapy, there is a need to discover novel agents that can induce apoptosis in cancer cells. To contribute to this field of interest, we investigated the effect of a synthetic hybrid from cativic acid and caffeic acid (5) on viability, proliferation, and apoptosis in human neuroblastoma cells (IMR-32). Three hybrids were prepared via Mitsunobu esterification from 17-hydroxycativic acid (1) and natural phenols. Cell viability was analyzed by MTT assay. SYTOX green and LDH leakage were used to determine the cytotoxic effect. Caspase-3 activity, cell cycle phases, and proliferation were analyzed in order to characterize the biological effects of hybrid 5. The mitogen-activated protein kinase (MAPK) status was evaluated for elucidating the potential mechanisms involved in hybrid 5 effect. Hybrid 5 reduced the viability of IMR-32 cells in a time- and concentration-dependent manner (IC50 = 18.0 ± 1.3 µM) as a result of its antiproliferative effect through changes in the cell cycle distribution and induction of apoptosis associated with activation of caspase-3. Exposure to 5 triggered ERK1/2 activation and nuclear translocation. Hybrid 5 also promoted an increase in nuclear localization of the transcription factor c-Jun. Inhibition of ERK1/2 and JNK potentiated 5-induced inhibition of IMR-32 viability. Hybrid 5 displays cell growth inhibition by promoting cell cycle arrest and apoptosis, through ERK1/2 and JNK participation.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Ácidos Cafeicos/farmacología , Diterpenos/farmacología , Antineoplásicos Fitogénicos/química , Apoptosis/efectos de los fármacos , Ácidos Cafeicos/química , Caspasa 3/metabolismo , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Diterpenos/química , Grindelia/química , Humanos , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Neuroblastoma/tratamiento farmacológico , Señales de Localización Nuclear/efectos de los fármacos
20.
Mol Neurobiol ; 54(5): 3236-3252, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-27080543

RESUMEN

We have previously demonstrated that oligomeric amyloid ß peptide (oAß) together with iron overload generates synaptic injury and activation of several signaling cascades. In this work, we characterized hippocampal neuronal response to oAß. HT22 neurons exposed to 500 nM oAß showed neither increased lipid peroxidation nor altered mitochondrial function. In addition, biophysical studies showed that oAß did not perturb the lipid order of the membrane. Interestingly, although no neuronal damage could be demonstrated, oAß was found to trigger bifurcated phosphoinositide-dependent signaling in the neuron, on one hand, the phosphorylation of insulin receptor, the phosphatidylinositol 3-kinase (PI3K)-dependent activation of Akt, its translocation to the nucleus and the concomitant phosphorylation, inactivation, and nuclear exclusion of the transcription factor Forkhead Box O3a (FoxO3a), and on the other, phosphoinositide-phospholipase C (PI-PLC)-dependent extracellular signal-regulated kinase 1/2 (ERK1/2) activation. Pharmacological manipulation of the signaling cascades was used in order to better characterize the role of oAß-activated signals, and mitochondrial function was determined as a measure of neuronal viability. The inhibition of PI3K, PI-PLC, and general phosphoinositide metabolism impaired neuronal mitochondrial function. Furthermore, increased oAß-induced cell death was observed in the presence of phosphoinositide metabolism inhibition. Our results allow us to conclude that oAß triggers the activation of phosphoinositide-dependent signaling, which results in the subsequent activation of neuroprotective mechanisms that could be involved in the determination of neuronal fate.


Asunto(s)
Péptidos beta-Amiloides/toxicidad , Fosfatidilinositoles/metabolismo , Multimerización de Proteína , Transducción de Señal , Animales , Línea Celular , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Proteína Forkhead Box O3/metabolismo , Humanos , Ratones , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Neuronas/patología , Fosfatidilinositol 3-Quinasas/metabolismo , Agregado de Proteínas , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas , Receptor de Insulina/metabolismo , Transducción de Señal/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA