Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Mol Model ; 30(3): 73, 2024 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-38368310

RESUMEN

CONTEXT: One of the prevalent methods for evaluating separation performance is to predict the interactions of solvent and solute molecules. The infinite dilution activity coefficient, Gibbs free energy, and sigma profiles provided insights into the solubilization of a solute and revealed the intensity of the solution's molecular interactions. The effective thermodynamic tools (infinite dilution activity coefficient, Gibbs free energy) were evaluated for predicting the efficiency of 18 polar and non-polar organic solvents in rubber seed oil (RSO) extraction. An infinite dilution activity coefficient was computed to evaluate the solubility of the rubber seed oil model compound (linoleic acid) in the organic solvents. Gibbs free energy was evaluated to show the energy change associated with the molecules mixing process and forecast the miscibility of linoleic acid molecules in the solvents. Moreover, the study examined the sigma profiles and sigma surfaces of organic solvents and linoleic acid to acquire a deeper insight into their similarities and how they interact molecularly. According to the computational prediction and experimental verification, the thermodynamic properties of Gibbs free energy and activity coefficient proved to be highly effective tools for screening polar and moderately polar solvents, predicting the molecular interactions with solute. Whereas the sigma profile and sigma surface were found to be the most efficient tools for evaluating the efficacy of non-polar solvents. Solvents with moderate polarity, such as tetrahydrofuran and diethyl ether, as well as non-polar solvents like pentane, heptane, and n-hexane, proved to be effective and favorable for oil extraction, resulting in the highest oil yields of approximately 27.0%. Overall, the COSMO-RS method demonstrates its utility in estimating the solubility of RSO in organic solvents, enabling early identification of the most effective solvent. METHODS: The initial geometry optimization of every component was conducted through density functional theory (DFT) using TmoleX software. A single-point density functional theory (DFT) computation using Becke Perdew 86 (BP86) and the Triple-Zeta Valence Potential (TZVPD) was performed to produce.cosmo files. COSMO-RS calculations were performed by applying the parameterization file BP_TZVPD_FINE_19.ctd using COSMOthermX software. The practical extraction of oil from plant seeds was performed using a sonicator bath to verify the accuracy of the COSMO-RS predictions.

2.
Molecules ; 28(24)2023 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-38138617

RESUMEN

The conventional hydrodenitrogenation method is expensive and involves the use of catalysts and harsh procedures. In the last few years, ionic liquids (ILs) have gained attention as a promising alternative solvent for fuel oil extractive denitrogenation. In this work, the Conductor-like Screening Model for Real Solvents (COSMO-RS) was used to screen 173 potential ILs as solvents for fuel oil. Two ILs (1-ethyl-3-methylimidazolium dicyanamide ([EMIM][N(CN)2]) and 1-ethyl-3-methylimidazolium methanesulfonate ([EMIM][MeSO3])) were selected for experimental investigation. The experimental liquid-liquid extraction of pyrrole (taken as the model nitrogen compound) from n-hexadecane (the model fuel) was conducted at 298 K and 1 atm with feed concentrations of pyrrole ranging from 10 to 50 wt%, using either the two pure ILs or their mixtures with dimethylformamide or ethylene glycol. Moreover, the NRTL model was effectively used to correlate the experimental tie lines. This work shows that the use of a binary mixture of ILs with a conventional solvent results in good selectivity, but has a low capacity for extracting pyrrole compounds. On the other hand, using an IL-IL mixture exhibits good results for both capacity and selectivity. All the ternary systems tested showed positive slopes, indicating that the nitrogen compounds had a higher affinity for the IL and binary mixture extract phase. In fact, the extraction efficiency for all the systems shows promising results. This characteristic is advantageous, as it requires less solvent to remove nitrogen compounds.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA