Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Int J Mol Sci ; 25(4)2024 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-38396811

RESUMEN

Klebsiella pneumoniae (Kpn) is an opportunistic pathogen that causes intrahospital complications such as pneumonia, liver abscesses, soft tissue infections, urinary infections, bacteraemia, and, in some cases, death. Since this bacterium has a higher frequency than other Gram-negative pathogens, it has become an important pathogen to the health sector. The adaptative genome of Kpn likely facilitates increased survival of the pathogen in diverse situations. Therefore, several studies have been focused on developing new molecules, synergistic formulations, and biomaterials that make it possible to combat and control infections with and dispersion of this pathogen. Note that the uncontrolled antibiotic administration that occurred during the pandemic led to the emergence of new multidrug-resistant strains, and scientists were challenged to overcome them. This review aims to compile the latest information on Kpn that generates intrahospital infections, specifically their pathogenicity-associated factors. Furthermore, it explains the natural-product-based treatments (extracts and essential oils) developed for Kpn infection and dispersion control.


Asunto(s)
Infecciones por Klebsiella , Klebsiella pneumoniae , Humanos , Klebsiella pneumoniae/genética , Infecciones por Klebsiella/tratamiento farmacológico , Infecciones por Klebsiella/microbiología , Farmacorresistencia Microbiana , Factores de Virulencia/genética , Antibacterianos/farmacología , Antibacterianos/uso terapéutico
2.
Front Bioeng Biotechnol ; 11: 1295626, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38076436

RESUMEN

Background: There is a strong interest in designing new scaffolds for their potential application in tissue engineering and regenerative medicine. The incorporation of functionalization molecules can lead to the enhancement of scaffold properties, resulting in variations in scaffold compatibility. Therefore, the efficacy of the therapy could be compromised by the foreign body reaction triggered after implantation. Methods: In this study, the biocompatibilities of three scaffolds made from an alginate-chitosan combination and functionalized with gold nanoparticles (AuNp) and alginate-coated gold nanoparticles (AuNp + Alg) were evaluated in a subcutaneous implantation model in Wistar rats. Scaffolds and surrounding tissue were collected at 4-, 7- and 25-day postimplantation and processed for histological analysis and quantification of the expression of genes involved in angiogenesis, macrophage profile, and proinflammatory (IL-1ß and TNFα) and anti-inflammatory (IL-4 and IL-10) cytokines. Results: Histological analysis showed a characteristic foreign body response that resolved 25 days postimplantation. The intensity of the reaction assessed through capsule thickness was similar among groups. Functionalizing the device with AuNp and AuNp + Alg decreased the expression of markers associated with cell death by apoptosis and polymorphonuclear leukocyte recruitment, suggesting increased compatibility with the host tissue. Similarly, the formation of many foreign body giant cells was prevented. Finally, an increased detection of alpha smooth muscle actin was observed, showing the angiogenic properties of the elaborated scaffolds. Conclusion: Our results show that the proposed scaffolds have improved biocompatibility and exhibit promising potential as biomaterials for elaborating tissue engineering constructs.

3.
Sci Rep ; 13(1): 19763, 2023 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-37957308

RESUMEN

Acute respiratory infections (ARIs) are a major cause of morbidity and mortality among children. The causative pathogens show geographic and seasonal variations. We retrospectively evaluated the frequency and seasonality of respiratory pathogens in children and adolescents (age: 0-19 years) with ARIs treated between January 1, 2021, and March 31, 2022, at a single center in Mexico. Out of 2400 patients, 1,603 were diagnosed with SARS-CoV-2 infection and 797 were diagnosed with other common respiratory pathogens (CRPs). Of the 797 patients, 632 were infected with one CRP and 165 with > 2 CRPs. Deaths occurred only in SARS-CoV-2-infected patients. Rhinovirus/Enterovirus, respiratory syncytial virus B, and parainfluenza virus 3 were the most prevalent in cases with single and multiple infections. CRP showed a high frequency between autumn and winter of 2021, with higher incidence of hospitalization compared to COVID-19. The main comorbidities were immunosuppression, cardiovascular disease (CD), and asthma. The frequency of CRPs showed a downward trend throughout the first half of 2021. CRPs increased in single- and co-infection cases between the fourth and fifth waves of COVID-19, probably due to decreased nonpharmaceutical interventions and changes in diagnostic tests. Age, cyanosis (symptom), and immunosuppression (comorbidity) were found to differentiate between SARS-CoV-2 infection and CRP infection.


Asunto(s)
COVID-19 , Infecciones del Sistema Respiratorio , Humanos , Niño , Adolescente , Lactante , Recién Nacido , Preescolar , Adulto Joven , Adulto , México/epidemiología , Estudios Retrospectivos , Centros de Atención Terciaria , COVID-19/epidemiología , COVID-19/complicaciones
4.
Int J Mol Sci ; 24(19)2023 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-37834193

RESUMEN

The chorioallantoic membrane (CAM) can be used as a valuable research tool to examine tumors. The CAM can be used to investigate processes such as migration, invasion, and angiogenesis and to assess novel antitumor drugs. The CAM can be used to establish tumors in a straightforward, rapid, and cost-effective manner via xenotransplantation of cells or tumor tissues with reproducible results; furthermore, the use of the CAM adheres to the three "R" principle, i.e., replace, reduce, and refine. To achieve successful tumor establishment and survival, several technical aspects should be taken into consideration. The complexity and heterogeneity of diseases including neuroblastoma and cancers in general and their impact on human health highlight the importance of preclinical models that help us describe tumor-specific biological processes. These models will not only help in understanding tumor biology, but also allow clinicians to explore therapeutic alternatives that will improve current treatment strategies. In this review, we summarize the technical characteristics as well as the main findings regarding the use of this model to study neuroblastoma for angiogenesis, metastasis, drug sensitivity, and drug resistance.


Asunto(s)
Antineoplásicos , Neuroblastoma , Animales , Embrión de Pollo , Humanos , Pollos , Membrana Corioalantoides , Neuroblastoma/genética , Neuroblastoma/patología , Antineoplásicos/farmacología , Biología
6.
Transl Pediatr ; 12(7): 1319-1326, 2023 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-37575905

RESUMEN

Background: More than two years after the pandemic of COVID-19 caused by the severe acute respiratory syndrome coronavirus 2 (SARS-COV-2) there is a great lack of information. The presence of immunoglobulin G (IgG) have been related with disease severity. Patients with comorbidities could develop more severe infection; however, the evaluation of the humoral response in pediatric population are needed especially in patients with comorbidities. Our aim was to describe the behavior of IgG in pediatric patients and to know if there is a difference between patients with comorbidities. Methods: A prospective comparative cohort study was carried out in a single center from June 2020 to January 2021, with a follow-up of 6 months. The study included all the subjects with confirmatory test for SARS-CoV-2 from 1 month to 17 years 11 months, the follow-up of the disease's evolution and measurement of IgG antibodies was collected. We obtained the clinical data, and comorbidities like arterial hypertension, diabetes, obesity, and cancer, the initial symptoms were recorded as well as the evolution regarding the severity of COVID-19 and the need for hospitalization, intensive care unit or mechanical ventilation. The follow up was carried out through medical consultation with an appointment every month that included direct interrogation, examination, and peripheral blood collection for the IgG quantification. The antibodies detection was done through peripheral blood and chemiluminescence microparticle immunoassay. Results: A total of 237 patients with positive polymerase chain reaction (PCR) for SARS-COV-2 were included, of which 147 presented IgG antibodies (62%), 112 (76%) without comorbidity and 35 (24%) with comorbidities, by the sixth month only 2.7% continue with positive antibody measurements. Patients with comorbidities reach higher IgG levels than patients without comorbidities the basal titters were: 5.17 for patients without comorbidities vs. 6.96 for the group with comorbidities (P<0.001). Conclusions: We found an association between the presence of comorbidities and high levels of IgG units in pediatric patients with COVID-19. Additionally, patients with more severe course of the disease have higher levels of IgG and by the third month less than 35% have immunity.

8.
Bol. méd. Hosp. Infant. Méx ; 80(2): 79-93, Mar.-Apr. 2023. graf
Artículo en Inglés | LILACS-Express | LILACS | ID: biblio-1447525

RESUMEN

Abstract Development and formation of the heart, the central organ of the circulatory system in vertebrates, starts early during embryonic development (second week), reaching maturity during the first few postnatal months. Cardiogenesis is a highly complex process that requires the active and orderly participation of different cardiac and non-cardiac cell populations. Thus, this process is sensitive to errors that may trigger a variety of heart-development defects, called congenital heart defects, which have a worldwide incidence of 8-10/1000 live births. A good understanding of normal cardiogenesis is required for better diagnosis and treatment of congenital heart diseases. This article reviews normal cardiogenesis by comparing information from classic studies with more recent findings. Information from descriptive anatomical studies of histological sections and selective in vivo marking of chicken embryos were emphasized. In addition, the discovery of heart fields has fueled the investigation of cardiogenic events that were believed to be understood and has contributed to proposals for new models of heart development.


Resumen El corazón, órgano central del aparato circulatorio de los vertebrados, comienza a formarse muy temprano en el desarrollo embrionario (segunda semana de gestación) y alcanza su forma madura durante los primeros meses posteriores al nacimiento. La cardiogénesis se caracteriza por ser un proceso altamente complejo, dependiente de la participación activa y ordenada de diferentes poblaciones celulares cardiacas y no cardiacas. Lo anterior hace que este proceso sea sensible a errores que pueden desencadenar una variedad de defectos del desarrollo cardiaco, llamados cardiopatías congénitas, con una incidencia mundial de 8 a 10/1000 nacidos vivos. Para mejorar el diagnóstico y el tratamiento de las cardiopatías congénitas es necesario comprender adecuadamente los eventos implicados en la cardiogénesis normal. En este artículo se revisa el desarrollo cardiaco normal, contrastando la información de los estudios clásicos con la de hallazgos recientes. Se hace hincapié en la información obtenida de los estudios de anatomía descriptiva de cortes histológicos y marcaje selectivo in vivo en embriones de pollo. Adicionalmente, el descubrimiento de los campos cardiogénicos ha estimulado la investigación de eventos cardiogénicos que se creían comprendidos, contribuyendo con propuestas de nuevos modelos del desarrollo del corazón.

9.
Life (Basel) ; 13(3)2023 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-36983924

RESUMEN

Hyperglycemia during gestation can disrupt fetal heart development and increase postnatal cardiovascular disease risk. It is therefore imperative to identify early biomarkers of hyperglycemia during gestation-induced fetal heart damage and elucidate the underlying molecular pathomechanisms. Clinical investigations of diabetic adults with heart dysfunction and transgenic mouse studies have revealed that overexpression or increased expression of TNNI3K, a heart-specific kinase that binds troponin cardiac I, may contribute to abnormal cardiac remodeling, ventricular hypertrophy, and heart failure. Optimal heart function also depends on the precise organization of contractile and excitable tissues conferred by intercellular occlusive, adherent, and communicating junctions. The current study evaluated changes in embryonic heart development and the expression levels of sarcomeric proteins (troponin I, desmin, and TNNI3K), junctional proteins, glucose transporter-1, and Ki-67 under fetal hyperglycemia. Stage 22HH Gallus domesticus embryos were randomly divided into two groups: a hyperglycemia (HG) group, in which individual embryos were injected with 30 mmol/L glucose solution every 24 h for 10 days, and a no-treatment (NT) control group, in which individual embryos were injected with physiological saline every 24 h for 10 days (stage 36HH). Embryonic blood glucose, height, and weight, as well as heart size, were measured periodically during treatment, followed by histopathological analysis and estimation of sarcomeric and junctional protein expression by western blotting and immunostaining. Hyperglycemic embryos demonstrated delayed heart maturation, with histopathological analysis revealing reduced left and right ventricular wall thickness (-39% and -35% vs. NT). Immunoexpression levels of TNNI3K and troponin 1 increased (by 37% and 39%, respectively), and desmin immunofluorescence reduced (by 23%). Embryo-fetal hyperglycemia may trigger an increase in the expression levels of TNNI3K and troponin I, as well as dysfunction of occlusive and adherent junctions, ultimately inducing abnormal cardiac remodeling.

10.
Adv Exp Med Biol ; 1411: 327-356, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36949317

RESUMEN

Attention deficit hyperactivity disorder (ADHD) is a neurobehavioural disorder in children and adolescents. Although increases in oxidative stress and disturbances of neurotransmitter system such as the dopaminergic and abnormalities in several brain regions have been demonstrated, the pathophysiology of ADHD is not fully understood. Nevertheless, ADHD involves several factors that have been associated with an increase in neuroinflammation. This chapter presents an overview of factors that may increase neuroinflammation and play a potential role in the development and pathophysiology of ADHD. The altered immune response, polymorphisms in inflammatory-related genes, ADHD comorbidity with autoimmune and inflammatory disorders and prenatal exposure to inflammation are associated with alterations in offspring brain development and are a risk factor; genetic and environmental risk factors that may increase the risk for ADHD and medications can increase neuroinflammation. Evidence of an association between these factors has been an invaluable tool for research on inflammation in ADHD. Therefore, evidence studies have made it possible to generate alternative therapeutic interventions using natural products as anti-inflammatories that could have great potential against neuroinflammation in ADHD.


Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad , Adolescente , Niño , Femenino , Humanos , Embarazo , Trastorno por Déficit de Atención con Hiperactividad/genética , Encéfalo , Inflamación , Enfermedades Neuroinflamatorias , Factores de Riesgo
11.
Life (Basel) ; 13(1)2023 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-36676114

RESUMEN

Despite the extensive information available on the different genetic, epigenetic, and molecular features of cardiogenesis, the origin of congenital heart defects remains unknown. Most genetic and molecular studies have been conducted outside the context of the progressive anatomical and histological changes in the embryonic heart, which is one of the reasons for the limited knowledge of the origins of congenital heart diseases. We integrated the findings of descriptive studies on human embryos and experimental studies on chick, rat, and mouse embryos. This research is based on the new dynamic concept of heart development and the existence of two heart fields. The first field corresponds to the straight heart tube, into which splanchnic mesodermal cells from the second heart field are gradually recruited. The overall aim was to create a new vision for the analysis, diagnosis, and regionalized classification of congenital defects of the heart and great arteries. In addition to highlighting the importance of genetic factors in the development of congenital heart disease, this study provides new insights into the composition of the straight heart tube, the processes of twisting and folding, and the fate of the conus in the development of the right ventricle and its outflow tract. The new vision, based on in vivo labeling and cell tracking and enhanced by models such as gastruloids and organoids, has contributed to a better understanding of important errors in cardiac morphogenesis, which may lead to several congenital heart diseases.

12.
Viruses ; 14(10)2022 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-36298717

RESUMEN

BACKGROUND: We analyzed the demographic, clinical, and diagnostic data of children and adolescents in Mexico, from the first case of coronavirus disease (COVID-19) to 28 February 2022. METHODS: Using the open databases of the Ministry of Health and a tertiary pediatric hospital, we obtained demographic and clinical data from the beginning of the COVID-19 pandemic until 28 February 2022. In addition, quantitative reverse-transcription polymerase chain reaction outputs were used to determine the viral load, and structural protein-based serology was performed to evaluate IgG antibody levels. RESULTS: Of the total 437,832 children and adolescents with COVID-19, 1187 died. Of these patients, 1349 were admitted to the Hospital Infantil de Mexico Federico Gómez, and 11 died. Obesity, asthma, and immunosuppression were the main comorbidities, and fever, cough, and headache were the main symptoms. In this population, many patients have a low viral load and IgG antibody levels. CONCLUSION: During the first 2 years of the COVID-19 pandemic in Mexico, children and adolescents had low incidence and mortality. They are a heterogeneous population, but many patients had comorbidities such as obesity, asthma, and immunosuppression; symptoms such as fever, cough, and headache; and low viral load and IgG antibodies.


Asunto(s)
Asma , COVID-19 , Humanos , Adolescente , Niño , Pandemias , COVID-19/diagnóstico , COVID-19/epidemiología , Tos , México/epidemiología , SARS-CoV-2 , Inmunoglobulina G , Fiebre , Cefalea , Obesidad , Asma/epidemiología
13.
World J Gastroenterol ; 28(29): 3886-3902, 2022 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-36157534

RESUMEN

BACKGROUND: The high prevalence and persistence of Helicobacter pylori (H. pylori) infection, as well as the diversity of pathologies related to it, suggest that the virulence factors used by this microorganism are varied. Moreover, as its proteome contains 340 hypothetical proteins, it is important to investigate them to completely understand the mechanisms of its virulence and survival. We have previously reported that the hypothetical protein HP0953 is overexpressed during the first hours of adhesion to inert surfaces, under stress conditions, suggesting its role in the environmental survival of this bacterium and perhaps as a virulence factor. AIM: To investigate the expression and localization of HP0953 during adhesion to an inert surface and against gastric (AGS) cells. METHODS: Expression analysis was performed for HP0953 during H. pylori adhesion. HP0953 expression at 0, 3, 12, 24, and 48 h was evaluated and compared using the Kruskal-Wallis equality-of-populations rank test. Recombinant protein was produced and used to obtain polyclonal antibodies for immunolocalization. Immunogold technique was performed on bacterial sections during adherence to inert surfaces and AGS cells, which was analyzed by transmission electron microscopy. HP0953 protein sequence was analyzed to predict the presence of a signal peptide and transmembrane helices, both provided by the ExPASy platform, and using the GLYCOPP platform for glycosylation sites. Different programs, via, I-TASSER, RaptorX, and HHalign-Kbest, were used to perform three-dimensional modeling. RESULTS: HP0953 exhibited its maximum expression at 12 h of infection in gastric epithelium cells. Immunogold technique revealed HP0953 localization in the cytoplasm and accumulation in some peripheral areas of the bacterial body, with greater expression when it is close to AGS cells. Bioinformatics analysis revealed the presence of a signal peptide that interacts with the transmembrane region and then allows the release of the protein to the external environment. The programs also showed a similarity with the Tip-alpha protein of H. pylori. Tip-alpha is an exotoxin that penetrates cells and induces tumor necrosis factor alpha production, and HP0953 could have a similar function as posttranslational modification sites were found; modifications in turn require enzymes located in eukaryotic cells. Thus, to be functional, HP0953 may necessarily need to be translocated inside the cell where it can trigger different mechanisms producing cellular damage. CONCLUSION: The location of HP0953 around infected cells, the probable posttranslational modifications, and its similarity to an exotoxin suggest that this protein is a virulence factor.


Asunto(s)
Infecciones por Helicobacter , Helicobacter pylori , Proteínas Bacterianas/metabolismo , Células Epiteliales/metabolismo , Epitelio/metabolismo , Exotoxinas/metabolismo , Mucosa Gástrica/patología , Infecciones por Helicobacter/microbiología , Humanos , Señales de Clasificación de Proteína , Proteoma/metabolismo , Proteínas Recombinantes/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Factores de Virulencia/metabolismo
14.
PLoS One ; 17(8): e0273097, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35969583

RESUMEN

Severe acute respiratory syndrome (SARS)-coronavirus (CoV)-2 infection in children and adolescents primarily causes mild or asymptomatic coronavirus disease 2019 (COVID-19), and severe illness is mainly associated with comorbidities. However, the worldwide prevalence of COVID-19 in this population is only 1%-2%. In Mexico, the prevalence of COVID-19 in children has increased to 10%. As serology-based studies are scarce, we analyzed the clinical features and serological response (SARS-CoV-2 structural proteins) of children and adolescents who visited the Hospital Infantil de México Federico Gómez (October 2020-March 2021). The majority were 9-year-old children without comorbidities who were treated as outpatients and had mild-to-moderate illness. Children aged 6-10 years and adolescents aged 11-15 years had the maximum number of symptoms, including those with obesity. Nevertheless, children with comorbidities such as immunosuppression, leukemia, and obesity exhibited the lowest antibody response, whereas those aged 1-5 years with heart disease had the highest levels of antibodies. The SARS-CoV-2 spike receptor-binding domain-localized peptides and M and E proteins had the best antibody response. In conclusion, Mexican children and adolescents with COVID-19 represent a heterogeneous population, and comorbidities play an important role in the antibody response against SARS-CoV-2 infection.


Asunto(s)
COVID-19 , SARS-CoV-2 , Adolescente , Anticuerpos Antivirales , COVID-19/epidemiología , Prueba de COVID-19 , Niño , Humanos , México/epidemiología , Obesidad , Glicoproteína de la Espiga del Coronavirus
15.
J Fungi (Basel) ; 7(11)2021 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-34829218

RESUMEN

PURPOSE OF REVIEW: Inflammatory tinea is an uncommon group of dermatophyte entities that predominantly cause fungal infection of the skin and hair. This review intends to present all of the available evidence regarding its epidemiology, etiopathogenesis, clinical features, and diagnostic methods as well as treatments recommended for various inflammatory tinea infections. This article provides a review of Majocchi's granuloma and dermatophytic or Hadida's disease. RECENT FINDINGS: The new phylogenetic classification of dermatophytes includes nine genera, and those that affect humans are Trichophyton, Microsporum, Epidermophyton, and Nannizzia. Furthermore, molecular advancements have revealed impaired antifungal immune responses caused by inflammatory tinea, which are detailed in this article. SUMMARY: The common denominator in these pathologies is the presence of impaired immune responses and, consequently, an impaired inflammatory response by the host. It is necessary to be familiar with these immunological characteristics in order to use the appropriate diagnostic methods and to provide adequate treatment.

16.
Pathogens ; 10(9)2021 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-34578235

RESUMEN

Microbiomes are defined as complex microbial communities, which are mainly composed of bacteria, fungi, and viruses residing in diverse regions of the human body. The human stomach consists of a unique and heterogeneous habitat of microbial communities owing to its anatomical and functional characteristics, that allow the optimal growth of characteristic bacteria in this environment. Gastric dysbiosis, which is defined as compositional and functional alterations of the gastric microbiota, can be induced by multiple environmental factors, such as age, diet, multiple antibiotic therapies, proton pump inhibitor abuse, H. pylori status, among others. Although H. pylori colonization has been reported across the world, chronic H. pylori infection may lead to serious consequences; therefore, the infection must be treated. Multiple antibiotic therapy improvements are not always successful because of the lack of adherence to the prescribed antibiotic treatment. However, the abuse of eradication treatments can generate gastric dysbiotic states. Dysbiosis of the gastric microenvironment induces microbial resilience, due to the loss of relevant commensal bacteria and simultaneous colonization by other pathobiont bacteria, which can generate metabolic and physiological changes or even initiate and develop other gastric disorders by non-H. pylori bacteria. This systematic review opens a discussion on the effects of multiple environmental factors on gastric microbial communities.

17.
Front Pediatr ; 9: 671831, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34485190

RESUMEN

The pandemic caused by SARS CoV-2 (COVID-19) has affected millions of people since 2020. There are clinical differences and in mortality between the adult and paediatric population. Recently, the immune response through the development of antibodies has gained relevance due to the risk of reinfection and vaccines' development. Objective: Was to compare the association of clinical history and the clinical presentation of the disease with the development of IgG antibodies against SARS-CoV-2 in paediatric and adult patients with a history of positive reverse transcriptase-polymerase chain reaction (RT-PCR) results. Methods: Cross-sectional observational study carried out in a Paediatric Hospital in Mexico City included patients under 18 years of age and health personnel with positive RT-PCR for COVID-19 comparing antibody expression. The development of specific IgG antibodies was measured, the presence of comorbidities, duration, and severity of symptoms was determined. Results: Sixty-one subjects (20 < 18 years and 41 > 18 years) were analysed. The median sample collection was 3 weeks. There were no differences in the expression of specific antibodies; no differences were shown according to the symptoms' severity. A positive correlation (r = 0.77) was demonstrated between the duration of symptoms and antibody levels. Conclusions: In conclusion, there is a clear association between the duration of the symptoms associated with SARS-CoV-2 infection and the IgG units generated in paediatric and adult patients convalescing from COVID-19.

18.
Int J Mol Sci ; 22(13)2021 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-34209800

RESUMEN

Diabetes mellitus (DM) is a chronic metabolic disease characterised by insulin deficiency, resulting in hyperglycaemia, a characteristic symptom of type 2 diabetes mellitus (DM2). DM substantially affects numerous metabolic pathways, resulting in ß-cell dysfunction, insulin resistance, abnormal blood glucose levels, impaired lipid metabolism, inflammatory processes, and excessive oxidative stress. Oxidative stress can affect the body's normal physiological function and cause numerous cellular and molecular changes, such as mitochondrial dysfunction. Animal models are useful for exploring the cellular and molecular mechanisms of DM and improving novel therapeutics for their safe use in human beings. Due to their health benefits, there is significant interest in a wide range of natural compounds that can act as naturally occurring anti-diabetic compounds. Due to rodent models' relatively similar physiology to humans and ease of handling and housing, they are widely used as pre-clinical models for studying several metabolic disorders. In this review, we analyse the currently available rodent animal models of DM and their advantages and disadvantages and highlight the potential anti-oxidative effects of natural compounds and their mechanisms of action.


Asunto(s)
Productos Biológicos/uso terapéutico , Diabetes Mellitus Experimental/tratamiento farmacológico , Estrés Oxidativo/efectos de los fármacos , Animales , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Productos Biológicos/farmacología , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patología , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patología , Humanos , Estrés Oxidativo/fisiología , Roedores
19.
Artículo en Inglés | MEDLINE | ID: mdl-33477253

RESUMEN

Chronic diseases in childhood can affect the physical and mental health of patients and their families. The objective of this study was to identify the sociodemographic and psychosocial factors that predict resilience in family caregivers of children with cancer and to define whether there are differences in the levels of resilience derived from these sociodemographic variables. Three hundred and thirty family caregivers of children with cancer, with an average age of 32.6 years were interviewed. The caregivers responded to a battery of tests that included a questionnaire of sociodemographic variables, the Measuring Scale of Resilience, the Beck Depression Inventory, the Inventory of Quality of Life, the Beck Anxiety Inventory, an interview of caregiver burden and the World Health Organization Well-Being Index. The main findings indicate that family caregivers of children with cancer reported high levels of resilience, which were associated positively with quality of life, psychological well-being and years of study and associated negatively with depression, anxiety and caregiver burden. The variables that predicted resilience in families of children with cancer were quality of life, psychological well-being, depression and number of children. Family caregivers who were married and Catholic showed higher resilience scores. We conclude that being a caregiver in a family with children with cancer is associated with symptoms of anxiety and with depressive episodes. These issues can be overcome through family strength, well-being, quality of life and positive adaptation processes and mobilization of family resources.


Asunto(s)
Adaptación Psicológica , Cuidadores/psicología , Depresión/epidemiología , Neoplasias/epidemiología , Calidad de Vida , Resiliencia Psicológica , Adulto , Ansiedad/epidemiología , Niño , Estudios Transversales , Depresión/psicología , Familia , Femenino , Humanos , Masculino , Neoplasias/psicología
20.
Front Microbiol ; 12: 817200, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35095820

RESUMEN

World Health Organization (WHO) has prioritized the infectious emerging diseases such as Coronavirus Disease (COVID-19) in terms of research and development of effective tests, vaccines, antivirals, and other treatments. Severe Acute Respiratory Syndrome-Coronavirus-2 (SARS-CoV-2), the etiological causative agent of COVID-19, is a virus belonging to risk group 3 that requires Biosafety Level (BSL)-3 laboratories and the corresponding facilities for handling. An alternative to these BSL-3/-4 laboratories is to use a pseudotyped virus that can be handled in a BSL-2 laboratory for study purposes. Recombinant Vesicular Stomatitis Virus (VSV) can be generated with complementary DNA from complete negative-stranded genomic RNA, with deleted G glycoprotein and, instead, incorporation of other fusion protein, like SARS-CoV-2 Spike (S protein). Accordingly, it is called pseudotyped VSV-SARS-CoV-2 S. In this review, we have described the generation of pseudotyped VSV with a focus on the optimization and application of pseudotyped VSV-SARS-CoV-2 S. The application of this pseudovirus has been addressed by its use in neutralizing antibody assays in order to evaluate a new vaccine, emergent SARS-CoV-2 variants (delta and omicron), and approved vaccine efficacy against variants of concern as well as in viral fusion-focused treatment analysis that can be performed under BSL-2 conditions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA