Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Chemosphere ; 308(Pt 1): 136002, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35973505

RESUMEN

Various fillers such as zeolites, metal-organic framework, carbon, metal framework, graphene, and covalent organic framework have been incorporated into the polymers. However, these materials are facing issues such as incompatibility with the polymer matrix, which leads to the formation of non-selective voids and thus, reduces the gas separation properties. Recent studies show that hexagonal boron nitride (h-BN) possesses attractive characteristics such as high aspect ratio, good compatibility with polymer materials, enhanced gas barrier performance, and improved mechanical properties, which could make h-BN the potential candidate to replace conventional fillers. The synthesis of materials and membranes is the subject of this review, which focuses on recent developments and ongoing problems. Additionally, a summary of the mathematical models that were utilised to forecast how well polymer composites would perform in gas separation is provided. It was found in the previous studies that tortuosity is the governing factor for the determination of the effectiveness of a nanofiller as a gas barrier enhancer in polymer matrices. The shape of the nanofiller particles and sheets, disorientation and distribution of the nanofillers within the polymer matrix, state of aggregation and rate of reaggregation of the nanofiller particles, as well as the compatibility of the nanofiller with the polymer matrix all played a significant role in determining how well a particular nanofiller will perform in enhancing the gas barrier properties of the nanocomposites. For this purpose, this review has been focused not only on the experimentation work but also on the effect of tortuosity, exfoliation quality, compatibility, disorientation, and reaggregation of nanofillers.

2.
Chemosphere ; 305: 135466, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35760125

RESUMEN

Corrosion is a major problem resulting from acid gases found in natural gas being transported in pipelines. To solve this problem, high aspect ratio h-BN nanosheets have been incorporated and are properly assimilated in the CA matrix, this led to an increase in tortuous path of flow for the gas resulting in smooth, dense membrane samples causing exceptional permeability reduction. Hexagonal Boron Nitride (h-BN) nanosheets have been synthesized and incorporated into cellulose acetate (CA) matrix using solution casting method. Nanosheets of various sizes, separated by varying centrifugation speeds (i.e. 500 rpm, 700 rpm, 1500 rpm, 2000 rpm and 2500 rpm), have been prepared and used for our work. The resulting nanocomposites, having thickness ranging between 40 and 60 µm, were then tested for CO2 gas permeability reduction using both short-term (8 h) tests as well as long-term (72-h tests). As a result of these tests, a maximum CO2 permeability reduction of 99.84% is found with a minimum CO2 permeability of 3.25 barrer. For dimensional analysis of both nanosheets and nanocomposites, scanning electron microscopy (SEM) analysis is used. For verifying the presence of the required functional groups in our synthesized samples, FT-IR spectroscopy is used. Moreover, to confirm the presence of crystalline phases, X-ray Diffraction (XRD) analysis is used. Also, tensile testing is used to analyze the mechanical robustness and it was found that nanocomposite samples exhibited higher tensile strength as compared to pristine samples. Furthermore, tribological property analysis was also carried out for adhesion testing of polymeric material with steel.


Asunto(s)
Dióxido de Carbono , Nanocompuestos , Compuestos de Boro/química , Gases , Nanocompuestos/química , Espectroscopía Infrarroja por Transformada de Fourier
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA