Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 11(1): 9108, 2021 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-33907228

RESUMEN

Topological defects in liquid crystals (LCs) dominate molecular alignment/motion in many cases. Here, the neural network (NN) function has been introduced to predict the LC orientation condition (orientation angle and order parameter) at local positions around topological defects from the phase/polarization microscopic color images. The NN function was trained in advance by using the color information of an LC in a planar alignment cell for different orientation angles and temperatures. The photo-induced changes of LC molecules around topological defects observed by the time-resolved measurement was converted into the image sequences of the orientation angle and the order parameter change. We found that each pair of brushes with different colors around topological defects showed different orientation angle and ordering changes. The photo-induced change was triggered by the photoisomerization reaction of molecules, and one pair of brushes increased in its order parameter just after light irradiation, causing gradual rotation in the brush. The molecules in the other pair of brushes were disordered and rotated by the effect of the initially affected region. This combination approach of the time-resolved phase/polarization microscopy and the NN function can provide detailed information on the molecular alignment dynamics around the topological defects.

2.
ACS Omega ; 4(9): 13936-13942, 2019 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-31497711

RESUMEN

Topological defects in liquid crystals (LCs) have been intensively studied and intentionally generated in an organized way recently because they could control the alignment and motion of LCs. We studied how the topological defects could change the molecular orientation/alignment from the observation of photo-induced orientation change of a photo-responsive LC. The photo-induced dynamics was observed by an LED-induced time-resolved polarization/phase microscopy with white light illumination. From the color image sequence, we found that the molecular orientation change started from the topological defects and the orientation change propagated as a pair of defects and was connected, and further disordering was induced as a next step after the initial orientation change finished.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA