Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nanoscale Adv ; 5(24): 7042-7056, 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-38059034

RESUMEN

Recently, understanding the origin of induced magnetic characteristics in transition metal atom-doped QDs has been a major focus owing to their potential applications in the area of spintronic devices. A detailed experimental and theoretical investigation was conducted to understand the physical properties of Co-doped ZnS QDs containing different weight percentages of Co atoms [CoxZn1-xS (x = 0.00, 0.03, 0.06, and 0.09)], prepared using chemical co-precipitation techniques. X-ray diffraction studies proved that all the prepared QDs formed an extremely pure cubic zinc blende crystallographic phase free of contaminants. The validation of the quantum dot nature of all the samples was provided by the HRTEM images, BET studies, and blue shift in the absorption spectra. Both the obtained FTIR and PL spectra at room temperature also confirmed the phase purity of the prepared QDs. The observed weak ferromagnetic behavior of the doped samples was due to the presence of p-d hybridization between the 3d levels of Co2+ ions and 3p levels of S2- ions of the host ZnS QDs. Hysteresis loops that were obtained at room temperature validated this weak ferromagnetic nature. These obtained results were also supported theoretically using DFT calculations. FDTD simulations provided a detailed explanation for the observed blue shift in the absorption spectra originating from the quantum confinement effect of doped and undoped ZnS QDs. The dielectric properties of all the samples were examined properly, and it was also found that the grain boundaries contributed effectively to providing the dielectric response. The doped ZnS sample containing more Co dopants at low frequencies showed a progressive rise in polarisation loss. In addition, Co-doped ZnS QDs are efficient photocatalysts. A pH-dependent photodegradation test of ciprofloxacin (CIP) antibiotic was conducted using 9% Co-doped ZnS QDs. It was observed that 9% Co-doped ZnS nanocatalysts has sufficient capability to degrade CIP to around 94.7% in a solution of pH 10 within one hour. Therefore, besides showing photocatalytic effects, Co-doped ZnS QDs act as ideal dilute magnetic semiconductors (DMSs) and will undoubtedly become excellent candidates for the microelectronics industry because of their special ability to exhibit spin-dependent magneto-electro-optical properties that find use in spin-polarized light-emitting diodes, solid-state lasers, and spin-transistor devices.

2.
Sci Rep ; 10(1): 2598, 2020 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-32054975

RESUMEN

The present study reports the antibacterial properties of flower-shaped ZnO (FZnO) microstructures and its comparison with that of hexagon-shaped bulk ZnO (BZnO) nanostructures. The samples are prepared successfully by wet chemical method and the surface morphologies, structures and size of the ZnO samples are characterized by X-ray diffraction (XRD), Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), BET adsorption isotherm, and Photoluminescence (PL) Spectroscopy. The SEM and TEM images of the sample have confirmed flower-shaped structure of the ZnO. The materials are also analyzed by using an innovative tool called Lacunarity, a nonlinear dynamical (NLD) tool for proper understanding of the inherent surface properties of the particles formed, comparing the results estimated with the BET results obtained, thereby confirming our proposition to use it as an important parameter in predictive models. In this new approach, geometry of the surface structure is being associated with biological properties, in order to come up with easier ways to identify materials for any such applications where rich surface structure is desired. The photocatalytic activity of the flower-shaped material is carried out to find out its optical properties as another marker for confirming the antimicrobial activities. It has been reported for the first time that the prominent antibacterial activities are favoured by the FZnO microstructure having lesser Lacunarity, significantly better than its bulk counterpart, for inhibiting gram negative - Escherichia coli microorganism.


Asunto(s)
Antibacterianos/química , Antibacterianos/farmacología , Escherichia coli/efectos de los fármacos , Nanoestructuras/química , Óxido de Zinc/química , Óxido de Zinc/farmacología , Catálisis , Infecciones por Escherichia coli/prevención & control , Humanos , Nanoestructuras/ultraestructura , Propiedades de Superficie
3.
Mater Sci Eng C Mater Biol Appl ; 106: 110177, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31753405

RESUMEN

ZnO nanoparticles (NPs) have variety of applications in different fields due to its size, structure, as well as physical and chemical properties. One of its prominent characteristics is its antibacterial behavior. Nonlinear Dynamical Theory (NLD) has a vast scope in the field of material science, especially when subtle correlations are searched for to extract hidden information. Since nano-ZnO materials may be used in inhibiting pathogens, its nonlinear features can be quantified and calibrated with the help of NLD tools. Multi-fractal Analysis (MFA) is an important diagnostic tool of NLD for not only analyzing nonlinear signal or images, but also predicting any spurious events likely to occur in the system under study. Thus, the analysis of the surface texture of the ZnO nano particles formed, using the TEM images and relate it with the variations of the XRD signal using NLD tools, is our first attempt reported here. Further, tools of MFA are used, for the first time, to see if there exists any correlation between the texture of the nano particles formed and the Zone of Inhibition (ZoI) we obtain as an output after allowing certain pathogens inhibit in the presence of the same nano particles. Analysis of TEM images guide us to predict the texture and structure of crystallites of ZnO:Cu samples which are responsible for overall behavior of inhibiting pathogens. In this paper, MFA of ZoI images, TEM images, and signal of four different Cu-doped ZnO nanoparticles are carried out and their outcomes are calibrated for estimating the size and pattern of unknown NPs synthesized under similar physical and chemical condition. Moreover, that MFA can be used reliably to predict spurious or abnormal surface structure or bacterial inhibition is also established.


Asunto(s)
Antibacterianos/química , Nanopartículas del Metal/química , Nanopartículas/química , Óxido de Zinc/química , Tecnología Química Verde , Nanopartículas del Metal/ultraestructura , Pruebas de Sensibilidad Microbiana , Microscopía Electrónica de Transmisión , Nanopartículas/ultraestructura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA