Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
RSC Adv ; 13(42): 29668-29674, 2023 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-37842072

RESUMEN

Analysis of pollution of the ocean plastics is presently being extensively carried out but special attention should be direct to matters. It is widely believed that plastic dose not decompose in the ocean. Certain contaminants, bisphenol-A (BPA) that serves the material for polycarbonate (PC) and epoxy resin (EPX) both of which may possibly be elute or degrade from commercial products, have often been detected in rivers, lakes and oceans. To clarify in detail the extend of this impact of this situation, purified PC (BPA free) was decomposed at temperatures range 50-230 °C. PC was seen to start decomposing at 50 °C over a 3 day period to generated 11 µg kg-1 BPA. Based on the rate constants of BPA, the activation energy was calculated 42.0 kJ mol-1. Since this value is almost same as the EPX and polystyrene (PS) of each decomposition. Based on the PC decomposition rate and the actual BPA value in the deep sea, the 280 million metric tons (MT) BPA in the world ocean was estimated. Unlike plastics, BPA shows endocrine disrupting in fish. It should thus be considered that degraded PC and EPX pose a serious threat to the marine ecosystem, directly.

2.
Environ Res ; 191: 110175, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32931789

RESUMEN

Bisphenol A (BPA) poses a serious environmental threat and health concern. This study presents the global monitoring of BPA on oceanic sandy beaches. According to monitoring results, many beach sands contain a harmful concentrations of BPA. Likewise, styrene oligomers (SOs), anthropogenic chemicals derived from polystyrene plastics, show similar concentrations as BPA. This study shows a strong, positive correlation between BPA and SOs. The results indicate that probably BPA-containing materials including micro- and nano-plastics can be an important source of BPA to the sand beaches. Therefore, BPA presents potential health risks to people spending considerable time on the beach.


Asunto(s)
Monitoreo del Ambiente , Plásticos , Compuestos de Bencidrilo , Humanos , Fenoles/toxicidad
3.
Sci Total Environ ; 667: 57-63, 2019 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-30825822

RESUMEN

This study demonstrates for the first time that styrene oligomers (SOs), which are indicators of polystyrene (PS) plastic contamination in the environment, are transported from land to the ocean. Samples of sand and seawater were taken from the coastline of the Tokyo Bay over the past four years, and all samples of both sand and seawater were found to contain SOs such as styrene monomer (SM), styrene dimers (SD), and styrene trimers (ST), with the concentration distributions of these being in the order of ST > SD > SM. The concentrations of these SOs are linearly proportional to monthly precipitation. These results indicate that various land-based SOs sources are connected with the estuary, a substantial amount of which are transported into Tokyo Bay through runoff as overland flow. As a result, runoff by precipitation is a potential transport pathway of land-based SOs sources. This finding is of interest in terms of both the extent of PS plastic pollution and the transport of SOs to the ocean. CAPSULE ABSTRACT: The assessment of the transport of styrene oligomers (SOs) in the coastal environment is performed.

4.
Environ Pollut ; 234: 167-173, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29175478

RESUMEN

The objective of this study is to investigate the qualitative contribution of internal and external factors of the area contaminated by polystyrene (PS) in coastal marine environments. This study is based on the extensive results of monitoring the styrene oligomers (SOs) present in sand and seawater samples along various coastlines of the Pacific Ocean. Here, anthropogenic SOs is derived from PS during manufacture and use, and can provide clues about the origin of SOs by PS pollution. The monitoring results showed that, if the concentration of SOs in water is higher than those concentrations in beach sand, this area could be affected by PS plastic caused by an external factor. On the other hand, if the concentration of SOs is higher in the beach sand, the region can be mainly influenced by PS plastic derived from its own area. Unlike the case of an external factor, in this case (internal influence), it is possible to take policy measures of the area itself for the PS plastic problem. Thus, this study is motivated by the need of policy measures to establish a specific alternative to the problems of PS plastic pollution in ocean environments.


Asunto(s)
Plásticos/análisis , Estirenos/análisis , Contaminantes Químicos del Agua/análisis , Monitoreo del Ambiente , Océano Pacífico , Agua de Mar/análisis , Contaminación del Agua/análisis
5.
Chemosphere ; 180: 500-505, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28427037

RESUMEN

Styrene oligomers (SOs) as global contaminants are an environmental concern. However, little is known on the distribution of SOs in the ocean. Here, we show the distribution of anthropogenic SOs generated from discarded polystyrene (PS) plastic monitored from the coastal ocean surface waters (horizontal distribution) and deep seawaters (vertical distribution) in the North-West Pacific Ocean. SOs concentrations in surface seawater and deep seawater ranged from 0.17 to 4.26 µg L-1 (total mean: 1.48 ± 1.23 µg L-1) and from 0.31 to 4.31 µg L-1 (total mean: 1.32 ± 0.87 µg L-1), respectively. Since there is no significant difference in the mean concentrations, SOs seems to be spread across marine environment selected in this study. Nevertheless, regional SOs appears to persist to varying degrees with their broad horizontal and vertical distribution in the ocean. Each horizontal and vertical distribution of SOs differs by approximately 1.95-2.57 times, probably depending on the events of weather and global ocean circulation. These results provide the distribution pattern of SOs for assessing environmental pollution arising from PS plastic.


Asunto(s)
Monitoreo del Ambiente , Plásticos/análisis , Poliestirenos/análisis , Contaminantes Químicos del Agua/análisis , Océano Pacífico , Agua de Mar/química , Contaminación Química del Agua/estadística & datos numéricos
6.
J Hazard Mater ; 300: 359-367, 2015 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-26218303

RESUMEN

Polystyrene (PS) plastic marine pollution is an environmental concern. However, a reliable and objective assessment of the scope of this problem, which can lead to persistent organic contaminants, has yet to be performed. Here, we show that anthropogenic styrene oligomers (SOs), a possible indicator of PS pollution in the ocean, are found globally at concentrations that are higher than those expected based on the stability of PS. SOs appear to persist to varying degrees in the seawater and sand samples collected from beaches around the world. The most persistent forms are styrene monomer, styrene dimer, and styrene trimer. Sand samples from beaches, which are commonly recreation sites, are particularly polluted with these high SOs concentrations. This finding is of interest from both scientific and public perspectives because SOs may pose potential long-term risks to the environment in combination with other endocrine disrupting chemicals. From SOs monitoring results, this study proposes a flow diagram for SOs leaching from PS cycle. Using this flow diagram, we conclude that SOs are global contaminants in sandy beaches around the world due to their broad spatial distribution.

7.
Environ Pollut ; 188: 45-9, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24553245

RESUMEN

Beach sand and seawater taken from the coastlines of the North-East Pacific Ocean and Hawaii State were investigated to determine the causes of global chemical contamination from polystyrene (PS). All samples were found to contain styrene monomer (SM), styrene dimers (SD), and styrene trimers (ST) with a concentration distribution of styrene analogues in the order of ST > SD > SM. The contamination by styrene analogues along the West Coast proved more severe than in Alaska and other regions. The Western Coastlines of the USA seem be affected by both land- and ocean-based pollution sources, which might result from it being a heavily populated area as the data suggest a possible proportional relationship between PS pollution and population. Our results suggest the presence of new global chemical contaminants derived from PS in the ocean, and along coasts.


Asunto(s)
Monitoreo del Ambiente , Poliestirenos/análisis , Estireno/análisis , Contaminantes Químicos del Agua/análisis , Alaska , Hawaii , Océano Pacífico , Poliestirenos/química , Agua de Mar/química , Estireno/química , Contaminantes Químicos del Agua/química
8.
Sci Total Environ ; 473-474: 490-5, 2014 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-24394362

RESUMEN

The pollution caused by plastic debris is an environmental problem with increasing concern in the oceans. Among the plastic polymers, polystyrene (PS) is one of the most problematic plastics due to the direct public health risk associated with their dispersion, as well as the numerous adverse environmental impacts which arise both directly from the plastics and from their degradation products. Little is known about their potential distribution characteristics throughout the oceans. For the first time, we report here on the regional distribution of styrene monomer (SM), styrene dimers (SD; 2,4-diphenyl-1-butene, SD1; 1,3-diphenyl propane, SD2), and styrene trimer (2,4,6-triphenyl-1-hexene: ST1), as products of PS decomposition determined from samples of sand and seawater from the shorelines of the North-West Pacific ocean. In order to quantitatively determine SM, SD (=SD1+SD2), and ST1, a new analytical method was developed. The detection limit was 3.3 µg L(-1), based on a signal-to-noise ratio of three, which was well-suited to quantify levels of SM, SD, and ST1 in samples. Surprisingly, the concentrations of SM, SD, and ST1 in sand samples from the shorelines were consistently greater than those in seawater samples from the same location. The results of this study suggest that SM, SD, and ST1 can be widely dispersed throughout the North-West Pacific oceans.


Asunto(s)
Monitoreo del Ambiente/métodos , Poliestirenos/análisis , Estireno/análisis , Océano Pacífico , Agua de Mar/química , Contaminantes Químicos del Agua/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA