Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Sci Total Environ ; 948: 174798, 2024 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-39019288

RESUMEN

Cocaine (COC) and benzoylecgonine (BE), the main COC metabolite, have been detected in aquatic ecosystems. Studies focusing on wild fish are, however, very limited, and no reports concerning elasmobranchs are available. This study investigated COC and BE levels in Brazilian Sharpnose sharks (Rhizoprionodon lalandii) (n = 13) using LC-MS/MS. All samples (13/13) tested positive for COC, with 92 % (12/13) testing positive for BE. COC concentrations (23.0 µg kg-1) were over 3-fold higher than BE (7.0 µg kg-1). COC levels were about three-fold significantly higher in muscle (33.8 ± 33.4 g kg-1) compared to liver (12.2 ± 14.2 µg kg-1). Females presented higher COC concentrations in muscle (40.2 ± 35.8 µg kg-1) compared to males (12.4 ± 5.9 µg kg-1). Several positive statistical correlations were noted between COC and BE (rho = 0.84) in females, indicating systemic COC transport and metabolization, as well as between BE and weight (rho = 0.62), and between COC and the Condition Factor (rho = 0.73). A strong correlation was noted between BE and COC in the muscle of non-pregnant females (rho = 1.00). This study represents the first COC and BE report in free-ranging sharks, and the findings point to the potential impacts of the presence of illicit drugs in environments.


Asunto(s)
Cocaína , Monitoreo del Ambiente , Tiburones , Contaminantes Químicos del Agua , Animales , Cocaína/análogos & derivados , Cocaína/análisis , Contaminantes Químicos del Agua/análisis , Brasil , Femenino , Masculino , Monitoreo del Ambiente/métodos , Espectrometría de Masas en Tándem
2.
Biol Trace Elem Res ; 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38773036

RESUMEN

A mining tailing dam rupture in Brazil in November 2015 released millions of tons of mining waste into the Rio Doce ecosystem, leading to long-term aquatic ecosystem impacts. Although multiple lines of evidence indicate tailings associations with potentially toxic elements in estuarine sediments and biological impact and bioaccumulation pathways in fishes, the extent of contamination in base benthic species is still largely unknown. Moreover, Rare Earth Elements (REE) have not received any attention in this regard. This study assessed REE in fiddler crabs (Minuca rapax) sampled from the Rio Doce estuary in 2017, nearly 2 years after the disaster. The ΣREE in crab hepatopancreas and muscle were high (327.83 mg kg-1 w.w. and 33.84 mg kg-1 w.w., respectively, compared to other assessments in crabs, indicating a preference for REE bioaccumulation in the hepatopancreas compared to muscle. Neodimium, La, and Ce were detected at the highest concentrations. The REE from the Rio Doce Basin were, thus, transported and deposited in the estuary with the mine tailings slurry, leading to bioaccumulation in crabs. This may lead to trophic effects and other ecological impacts not readily measured by typical impact assessment studies, revealing an invisible and not typically acknowledged damage to the Rio Doce estuary.

3.
Environ Pollut ; 345: 123497, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38331242

RESUMEN

Mining is of great relevance to the global economy, but its activities are challenging due to socio-environmental impacts. In January 2019, an iron ore tailings dam collapsed in Brumadinho (Minas Gerais, Brazil) releasing 12 × 106 m3 of tailings, causing human losses and devastation around 3.13 × 106 m2 of a watershed. In this context, the present study aimed to investigate the potential toxic effects of tailings from the collapsed dam using earthworms Eisenia andrei as a model organism for terrestrial environments. An extensive set of tests was performed, including behavioral (avoidance), acute (mortality and biomass) and chronic tests, such as biomass, reproduction and cytotoxicity (viability and cell density and change in coelomocyte pattern). The physical-chemical characterization revealed a higher density of the tailings in relation to the control soil, which can result in physical changes, such as soil compaction and surface sealing. Aluminum, Ca, Fe, Hg, Mg, Mn, K, Na and P registered higher concentrations in the tailings compared to the control soil, while Total Nitrogen, Total Organic Carbon and Organic Matter were higher in the natural soil. Based on the avoidance test, an EC50 of 27.18 ± 2.83% was estimated. No lethality was observed in the acute exposure, nor variations in biomass in the acute and chronic assays. However, there was a tendency to reduce the number of juveniles in relation to cocoons in the proportions of 3125; 12.5 and 25%. Significant changes in viability, cell density and pattern of amebocytes and eleocytes were observed up to the 35th day of exposure. A multi-biomarker approach (Integrated Biological Response version 2) indicated concentration-dependent effects and attenuation of cellular changes over time. These are the first results of chronic effects on earthworms exposed to tailings from the B1 dam. Despite being conclusive, we highlight the possible heterogeneity of the tailings and the necessary care in extrapolating the results.


Asunto(s)
Desastres , Oligoquetos , Contaminantes del Suelo , Animales , Humanos , Suelo/química , Minería , Biomarcadores/metabolismo , Brasil , Contaminantes del Suelo/análisis
4.
Environ Sci Pollut Res Int ; 31(7): 10737-10749, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38206461

RESUMEN

Water body contamination by leachate originated from dumpsites is a concern for municipal solid waste (MSW) management. In this context, this study aimed to evaluate antioxidant system alterations and oxidative and genotoxic effects in Danio rerio (zebrafish) exposed to leachate from a closed dumpsite. Groups comprising 50 fish were exposed (96 h) to different leachate concentrations (5, 15, 30, and 50%) to evaluate effects on liver and brain superoxide dismutase (SOD), catalase (CAT), and glutathione-S-transferase (GST) activities and reduced glutathione (GSH) and metallothionein (MT) concentrations, as well as malondialdehyde (MDA) and protein carbonylation (PTC) levels. Blood genotoxicity was evaluated by the comet assay. The investigated dumpsite leachate pond presented high chloride concentrations (Cl-; 2288.4 ± 69.5 mg L-1) and high electrical conductivity (EC; 8434.0 mS cm-1), indicating the presence of leachate. Concerning Danio rerio exposure, higher SOD (37%), CAT (67%), and GST (39%) activities and higher GSH (57%) concentrations were observed in liver following exposure to 50% leachate, while decreased brain GST (42%) activities and GSH (90%) levels were observed at the same leachate concentration. A significant increase in the olive tail moment (OTM; 280%) indicative of genotoxicity in blood was observed. A principal component analysis indicated that increased enzymatic activities and high levels of both GSH and MT were not sufficient to prevent the accumulation of reactive oxygen species, resulting in PTC and genotoxicity. Therefore, leachate exposure causes sublethal Danio rerio effects, altering the antioxidant system, increasing ROS production, and leading to PTC and genotoxicity. The findings demonstrate the need to further develop sublethal level assessments in zebrafish using leachate from different sources to subsidize risk assessments regarding MSW management.


Asunto(s)
Perciformes , Contaminantes Químicos del Agua , Animales , Antioxidantes/metabolismo , Pez Cebra/metabolismo , Estrés Oxidativo , Contaminantes Químicos del Agua/toxicidad , Catalasa/metabolismo , Daño del ADN , Superóxido Dismutasa/metabolismo , Perciformes/metabolismo , Cloruros
5.
Sci Total Environ ; 915: 170083, 2024 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-38224881

RESUMEN

Leachate is a highly complex waste with high toxicological potential that poses a significant threat to the terrestrial environment. Determining leachate physicochemical parameters and identifying xenobiotics alone is, however, not enough to determine the real environmental impacts. In this context, the use of terrestrial model organisms has been highlighted as a tool in ecotoxicological leachate assessments and as a guiding principle in risk assessments. In this context, this review aimed to present the most current state of knowledge concerning leachate toxicity and the bioassays employed in this evaluation concerning terrestrial plants and animals. To this end, a literature search on leachate effects on terrestrial organisms was carried out using ten search terms, in 32 different combinations, at the Web of Science and Scopus databases. A total of 74 eligible articles were selected. The retrieved studies analyzed 42 different plant and animal species and employed nine endpoints, namely phytotoxicity, genotoxicity, bioaccumulation, antioxidant system, cytotoxicity, reproduction, physiological changes, behavior and lethality. A frequent association of toxic leachate effects with metals was observed, mainly Pb, Cd, Cr, Mg, Zn and Cr, which can cause antioxidant system alterations and cyto- and genotoxicity. These elements have also been associated to reproductive effects in earthworms and mice. Specifically concerning plants, most of the retrieved studies employed Allium cepa in toxicity assays, reporting phytotoxic effects frequently associated to metals and soil parameter changes. Animal studies, on the other hand, mostly employed mice and evaluated genotoxicity and antioxidant system effects. Even with the description of toxic leachate effects in both plants and animals, a lack of knowledge is still noted concerning reproductive, physiological, cytotoxic, and behavioral effects in terrestrial species. We, thus, suggest that further studies be carried out on other animals, advancing our understanding on potential environmental leachate effects, also allowing for human health risk assessments.


Asunto(s)
Residuos Sólidos , Contaminantes Químicos del Agua , Humanos , Animales , Ratones , Residuos Sólidos/análisis , Antioxidantes/farmacología , Plantas , Cebollas , Metales , Contaminantes Químicos del Agua/análisis
6.
J Environ Manage ; 351: 119990, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38183952

RESUMEN

Leachate, an effluent produced during solid waste decomposition, interacts directly with soil, mainly in dumpsite areas. Studies on terrestrial animal exposure to leachate are, however, lacking. Plants are the most frequently studied organisms, while animal studies, especially earthworms, are limited. Nevertheless, ecotoxicological assessments involving earthworms are crucial due to their role in soil health and ecosystem maintenance, which are paramount in understanding potential terrestrial ecosystem leachate effects. In this context, this study aimed to evaluate behavioral effects, sublethal cytotoxicity and antioxidant system alterations in Eisenia andrei earthworms chronically exposed to leachate from a closed dumpsite. Cytotoxicity was determined by coelomocyte density, viability and cell typing, while antioxidant system alterations were assessed through superoxide dismutase (SOD), catalase (CAT), glutathione-S-transferase (GST), reduced glutathione (GSH) and metallothionein (MT) determinations. Malondialdehyde (MDA) and protein carbonylation (PTC) levels were also determined as oxidative effect markers. Finally, the Biomarker Response Index (BRI) was assessed, aiming to quantitatively integrate the results of the investigated endpoints and establish a biological health state (BHS) for each leachate concentration. Leachate exposure led to leak responses at concentrations of up to 50%, but attraction at higher concentrations. Decreased cell density (28%) was observed after 48 days and reduced viability (50%), after 14 days of leachate exposure. The observed cell typing changes indicate anti-inflammatory immune system effects. Leachate exposure led to several antioxidant system alterations, increasing SOD (2-6 %), CAT (5-35 %) and GST (5-70 %) activities and GSH (7-37%) and MT (3-67%) levels. Earthworm antioxidant defenses were, however, able to prevent lipid peroxidation, which decreased (11-37%) following leachate exposure to concentrations above 12.5%, and PTC, which increased at 42 days (26%) and reduced at 56 days (12 %). This is the first PTC assessment in leachate-exposed earthworms. The increased carbonylation levels observed after 42 days alongside MDA decreases highlight the need for further research employing oxidative effect biomarkers other than MDA. Finally, an integrated approach employing the BRI was carried out, revealing mild initial changes evolving to moderate to major effects at the highest leachate exposure concentration, with an effect attenuation detected at the end of the experiment. In this sense, this study brings forth a significant novelty, employing a biomarker previously not assessed in earthworms, demonstrating an oxidative effect, alongside the use of the BRI as an integrative tool for the endpoints applied in this assessment.


Asunto(s)
Oligoquetos , Contaminantes del Suelo , Animales , Antioxidantes/metabolismo , Oligoquetos/metabolismo , Estrés Oxidativo , Ecosistema , Contaminantes del Suelo/toxicidad , Contaminantes del Suelo/metabolismo , Superóxido Dismutasa/metabolismo , Suelo , Biomarcadores/metabolismo
7.
J Appl Microbiol ; 134(7)2023 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-37429601

RESUMEN

AIMS: Leachate comprises a solid waste decomposition product found fresh in collection trucks or as an effluent in landfills. This study aimed to assess the occurrence, concentrations, and genetic diversity of intact rotavirus species A (RVA) in solid waste leachate. METHODS AND RESULTS: Leachate samples were concentrated by ultracentrifugation, treated with propidium monoazide (PMA), and exposed to LED photolysis. Treated and untread samples were extracted using the QIAamp Fast DNA Stool mini kit, and nucleic acids were screened for RVA employing a Taqman® Real-time PCR. The PMA RT-qPCR method detected RVA in eight out of nine truck samples and in 15.40% (2/13) of the landfill leachate samples. The RVA concentrations in the PMA-treated samples ranged from 4.57 × 103 to 2.15 × 107 genomic copies (GC) 100 mL-1 in truck leachate and from 7.83 × 103 to 1.42 × 104 GC 100 mL-1 in landfill samples. Six truck leachate samples were characterized as RVA VP6 genogroup I2 by partial nucleotide sequencing. CONCLUSIONS: The high intact RVA detection rates and concentrations in truck leachate samples indicate potential infectivity and comprise a warning for solid waste collectors concerning hand-to-mouth contact and the splash route.


Asunto(s)
Eliminación de Residuos , Rotavirus , Contaminantes Químicos del Agua , Residuos Sólidos/análisis , Rotavirus/genética , Instalaciones de Eliminación de Residuos , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Genotipo , Contaminantes Químicos del Agua/análisis , Eliminación de Residuos/métodos
8.
J Appl Microbiol ; 134(7)2023 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-37391364

RESUMEN

AIMS: To investigate the occurrence of carbapenem-resistant Klebsiella pneumoniae (CRKP) and their clonal relationships from hospital and municipal wastewater treatment plants (WWTPs). METHODS AND RESULTS: Eighteen Kl. pneumoniae strains recovered from three WWTPs were identified by matrix-assisted laser desorption-ionization-time of flight (MALDI-TOF). The antimicrobial susceptibility were evaluated by disk-diffusion and the carbapenemases production by Carbapenembac®. The carbapenemases genes were investigated by real-time PCR and the clonal relationship through multilocus sequence typing (MLST). Thirty nine % (7/18) of isolates were classified as multidrug-resistant (MDR), 61.1% (11/18) extensively drug-resistant (XDR), and 83.3% (15/18) showed carbapenemase activity. Three carbapenemase-encoding genes were found, blaKPC (55%), blaNDM (27.8%) and blaOXA-370 (11.1%) as well five sequencing types ST11, ST37, ST147, ST244, and ST281. ST11 and ST244, sharing four alleles were grouped into clonal complex 11 (CC11). CONCLUSIONS: Our results show the importance of monitoring antimicrobial resistance in WWTPs effluents to minimize the risk of spreading bacterial load and ARGs in aquatic ecosystems, using advanced treatment technologies to reduce these emerging pollutants at WWTPs.


Asunto(s)
Antiinfecciosos , Klebsiella pneumoniae , Klebsiella pneumoniae/genética , Aguas Residuales , Tipificación de Secuencias Multilocus , Brasil , Ecosistema , beta-Lactamasas/genética , Proteínas Bacterianas/genética , Antibacterianos/farmacología , Pruebas de Sensibilidad Microbiana
9.
Mol Cell Endocrinol ; 564: 111883, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36736881

RESUMEN

This study investigated the mechanism of action of clotrimazole (CTZ) and its adverse effects in a model of endometriosis. After autologous endometrial implantation, 18 rats were randomized into two treatment groups: 200 mg/kg CTZ or vehicle for 15 consecutive days. The lesion growth, implant size, glandular atrophy, nitric oxide (NO) serum levels, number of macrophage cells and inducible nitric oxide synthase (iNOS) immunoreactivity were significantly reduced in the CTZ group compared with the control. CTZ (p < 0.05) reduced the lipid peroxidation and protein carbonylation levels in the liver but did not alter the superoxide dismutase (SOD), glutathione (GSH) or glutathione S-transferase (GST) levels in the brain; however, the drug significantly reduced SOD activity and enhanced GST activity in the liver. These results suggest that CTZ interferes with reactive nitrogen species production by downregulating iNOS expression and thus enhances the antioxidant system to promote atrophy and regression of endometriotic lesions, without adverse effects on the brain and/or liver.


Asunto(s)
Clotrimazol , Endometriosis , Femenino , Humanos , Ratas , Animales , Óxido Nítrico Sintasa de Tipo II/metabolismo , Clotrimazol/farmacología , Estrés Oxidativo , Antioxidantes/metabolismo , Glutatión/metabolismo , Superóxido Dismutasa/metabolismo , Peroxidación de Lípido , Óxido Nítrico/metabolismo , Biomarcadores/metabolismo
10.
Environ Sci Pollut Res Int ; 30(11): 28459-28479, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36689115

RESUMEN

Cocaine (COC) use concerns are on the increase for both authorities and civil society. Despite this, it is important to investigate COC effects or those of its main metabolite, belzoylecgonine (BE), in consolidated aquatic model organisms, such as the zebrafish (Danio rerio). This (mini) review consists in an assessment regarding toxicological studies carried out employing zebrafish (embryos, larvae or adults) exposed to COC and/or BE indexed at the SCOPUS and Web of Science databases. Ten different endpoints were analyzed in both embryos and larvae, whereas only four were analyzed in adults. Of the 23 studies, only five investigated COC and/or BE effects following an environmental approach when exposing zebrafish, while most (18 studies) analyzed COC effects under a drug of abuse approach. Cocaine exposure was noted as altering the expression of several genes, such as those linked to COC transport proteins, dopamine receptors, SP substance production, the tachykinin system, and the tyrosine hydroxylase enzyme. BE exposure resulted in more oxidative and proteomic effects than COC in embryos. Cocaine abstinence resulted in hyperactivity associated with stereotypy in adult fish, in addition to reduced responses to visual stimuli to red light and neuronal development pattern alterations. Cocaine was noted as accumulating in zebrafish eyes, possibly due to melanin binding, and causing dose-response cardiac effects in both embryos and adults. Despite the different effects addressed by our survey, we emphasize the lack of COC and BE exposure assessments in zebrafish employing an environmental point of view.


Asunto(s)
Cocaína , Contaminantes Químicos del Agua , Animales , Pez Cebra , Proteómica , Embrión no Mamífero , Oxidación-Reducción , Larva , Contaminantes Químicos del Agua/metabolismo
11.
Ecotoxicol Environ Saf ; 251: 114538, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36652740

RESUMEN

The increasing use of Rare Earth Elements (REE) in emerging technologies, medicine and agriculture has led to chronic aquatic compartment contamination. In this context, this aimed to evaluate the acute toxic effects of lanthanum (La), neodymium (Nd) and samarium (Sm), as both single and binary and ternary mixtures on the survival of the microcrustacean Daphnia similis. A metal solution medium with (MS) and without EDTA and cyanocobalamin (MSq) as chelators was employed as the assay dilution water to assess REE bioavailability effects. In the single exposure experiments, toxicity in the MS medium decreased following the order La > Sm > Nd, while the opposite was noted for the MSq medium, which was also more toxic than the MS medium. The highest MS toxicity was observed for the binary Nd + La (1:1) mixture (EC50 48 h of 11.57 ± 1.22 mg.L-1) and the lowest, in the ternary Sm + La + Nd (2:2:1) mixture (EC50 48 h 41.48 ± 1.40 mg.L-1). The highest toxicity in the MSq medium was observed in the single assays and in the binary Sm + Nd (1:1) mixture (EC50 48 h 10.60 ± 1.57 mg.L-1), and the lowest, in the ternary Sm + La + Nd (1:2:2) mixture (EC50 48 h 36.76 ± 1.54 mg.L-1). Concerning the MS medium, 75 % of interactions were additive, 19 % antagonistic, and 6 % synergistic. In the MSq medium, 56 % of interactions were synergistic and 44 % additive. The higher toxicity observed in the MSq medium indicates that the absence of chelators can increase the concentrations of more toxic free ions, suggesting that the MS medium should be avoided in REE assays. Additive interactions were observed in greater or equivalent amounts in both media and were independent of elemental mixture ratios. These findings improve the understanding of environmental REE effects, contributing to the establishment of future guidelines and ecological risk calculations.


Asunto(s)
Daphnia , Metales de Tierras Raras , Animales , Metales de Tierras Raras/toxicidad , Samario , Lantano/toxicidad , Neodimio/farmacología , Quelantes/farmacología
12.
Sci Total Environ ; 859(Pt 1): 160120, 2023 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-36370797

RESUMEN

Coupling of UV-C irradiation to different peroxides (H2O2, S2O82- and HSO5-) has great potential to degrade persistent organic compounds due to the formation of HO• or SO4•- species. However, an in-depth comparison between the performance of different UV-C/peroxide processes as a function of (i) target compound degradation, (ii) generated transformation products and (iii) lethal/sub lethal toxicity effects has not yet been performed. To this end a comparison study was carried out to evaluate the effectiveness of different UV-C/peroxide processes using the herbicide tebuthiuron (100 or 500 µg L-1) as a model pollutant. TBH degradation experiments were performed at lab-scale in real municipal wastewater treatment plant effluent and distilled water. Faster degradation occurred by increasing peroxide concentration from 735 to 2206 µmol L-1 in the municipal wastewater treatment plant effluent, mainly for S2O82-. Experiments performed in the presence of peroxide trapping agents - HO• and SO4•- (methoxibenzene) or HO• (2-propanol) - revealed that oxidation in the UV-C/S2O82- system occurs mainly through SO4•-. Lower toxicity for the MWWTP effluent was obtained after oxidative treatments using hydrogen peroxide or monopersulfate as oxidants which react mainly through HO• radicals. Two mechanistic pathways were proposed for tebuthiuron degradation: (i) hydrogen abstraction by HO• (H2O2 and HSO5-) and (ii) electron transfer by SO4•- (S2O82-). In addition, one unprecedented transformation product was identified. In conclusion, results emphasize the relevance of comparing the degradation of toxic compounds in the presence of different peroxide sources and matrices and simultaneouly evaluating responses chemical and biological endpoints.


Asunto(s)
Contaminantes Químicos del Agua , Purificación del Agua , Peróxidos , Peróxido de Hidrógeno/química , Contaminantes Químicos del Agua/análisis , Agua , Purificación del Agua/métodos , Oxidación-Reducción , Rayos Ultravioleta
13.
Environ Monit Assess ; 195(1): 243, 2022 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-36576602

RESUMEN

The final disposal of municipal solid waste (MSW) in dumpsites is still a reality worldwide, especially in low- and middle-income countries, leading to leachate-contaminated zones. Therefore, the aim of this study was to carry out soil and leachate physicochemical, microbiological, and toxicological characterizations from a non-operational dumpsite. The L-01 pond samples presented the highest physicochemical parameters, especially chloride (Cl; 4101 ± 44.8 mg L-1), electrical conductivity (EC; 10,452 ± 0.1 mS cm-1), and chemical oxygen demand (COD; 760 ± 6.6 mg L-1) indicating the presence of leachate, explained by its close proximity to the landfill cell. Pond L-03 presented higher parameters compared to pond L-02, except for N-ammoniacal and phosphorus levels, explained by the local geological configuration, configured as a slope from the landfill cell towards L-03. Seven filamentous and/or yeast fungi genera were identified, including the opportunistic pathogenic fungi Candida krusei (4 CFU) in an outcrop sample. Regarding soil samples, Br, Se, and I were present at high concentrations leading to high soil contamination (CF ≤ 6). Pond L-02 presented the highest CF for Br (18.14 ± 18.41 mg kg-1) and I (10.63 ± 3.66 mg kg-1), while pond L-03 presented the highest CF for Se (7.60 ± 1.33 mg kg-1). The most severe lethal effect for Artemia salina was observed for L-03 samples (LC50: 79.91%), while only samples from L-01 were toxic to Danio rerio (LC50: 32.99%). The highest lethality for Eisenia andrei was observed for L-02 samples (LC50: 50.30%). The applied risk characterization indicates high risk of all proposed scenarios for both aquatic (RQ 375-909) and terrestrial environments (RQ > 1.4 × 105). These findings indicate that the investigated dumpsite is contaminated by both leachate and metals, high risks to living organisms and adjacent water resources, also potentially affecting human health.


Asunto(s)
Eliminación de Residuos , Contaminantes Químicos del Agua , Humanos , Contaminantes Químicos del Agua/análisis , Monitoreo del Ambiente , Residuos Sólidos/análisis , Metales , Instalaciones de Eliminación de Residuos , Suelo
14.
Ecotoxicology ; 31(5): 689-699, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35362805

RESUMEN

Rare Earth Elements (REE) are becoming increasingly important economically and highly exploited, thus contributing to REE increases in ecosystems. The ecotoxicological effects of REE on the terrestrial environment are, however, not fully understood and information on the biological effects of REE is urgently required for environmental risk assessments. In this review, studies and gaps in the existing scientific literature regarding the toxicological effects of REE on terrestrial organisms are presented. A total of 41 articles from the Web of Science database are discussed. La and Ce are the most studied elements, while little information is found concerning heavy REE. Most studies have been performed on plant species and few investigations are available for animals. Plant effects such as reduced mitotic index, germination and photosynthesis and antioxidant system enzyme alterations have been reported. Invertebrate effects include mortality, reproduction alterations and reduced locomotion. Based on the limited number of articles on terrestrial environment REE effects, this review highlights the need for more detailed studies in order to elucidate the effects associated with the REE hormesis and perform complete risk assessments with the establishment of safe REE usage limits.


Asunto(s)
Ecosistema , Metales de Tierras Raras , Animales , Ecotoxicología , Invertebrados , Metales de Tierras Raras/toxicidad , Plantas
15.
Environ Monit Assess ; 194(3): 216, 2022 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-35199242

RESUMEN

The final disposal of solid waste in dumpsites can result in the migration of leachate components through the soil, contaminating it as well as the groundwater. The purpose of this manuscript was to analyze the contamination of a dumpsite along with three unlined leachate ponds that operated for approximately 25 years. Soil, surface water from three leachate lagoons, and groundwater samples were collected. Chemical analyses such as chloride, ammonia nitrogen, and total organic carbon were performed. The present work also aimed at elaborating the local flow pattern map and the assessment of subsoil. The results showed local subsoil mostly clayey, also occurring a region of sandy predominance, and great variation of rocky outcrops depth. The groundwater flow occurs from the waste towards one of the leachate lagoons. The leachate lagoon located closer to deposited area presented the highest concentration of all contaminants measured. Groundwater and soil showed low ammonia nitrogen with a maximum value of 2 mg.L-1. Elevated chloride levels were detected in all matrices studied. In soil depth, the concentration varied ​​between 17 and 1270 mg.L-1 and in groundwater between 843 and 3,252 mg.L-1. Results suggest the migration of leachate components through the local soil. The concentration of total organic carbon measured in soil was of 10-982 mg.L-1, suggesting its natural presence.


Asunto(s)
Agua Subterránea , Eliminación de Residuos , Contaminantes Químicos del Agua , Brasil , Monitoreo del Ambiente/métodos , Agua Subterránea/análisis , Eliminación de Residuos/métodos , Suelo , Instalaciones de Eliminación de Residuos , Contaminantes Químicos del Agua/análisis
16.
Aquat Toxicol ; 245: 106122, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35180455

RESUMEN

Contaminants of emerging concern (CEC) are routinely detected in aquatic environments, especially pharmaceuticals, such as carbamazepine (CBZ), and neonicotinoid pesticides, like acetamiprid (ACT). CECs can interact with each other and with other legislated contaminants like Cd, resulting in unknown effects. Most studies evaluate only the effects of single contaminant exposures on aquatic biota. Therefore, the aim of the present study was to assess the effects of both single and combined CBZ, ACT and Cd exposures on zebrafish brain and liver oxidative stress parameters and metal homeostasis. The biomarkers catalase (CAT), glutathione-S-transferase (GST), total thiols (TOT), metallothionein (MT) and malondialdehyde (MDA) and the essential elements Ca, Cu, K, Na, Mg, Mn and Zn were evaluated after 96-hour static exposures. CBZ, ACT and Cd single (brain and liver) and combined (liver) treatments resulted in oxidative effects in both fish organs, also leading to metal (Ca, Mg, K, Mn, Zn and Cu) homeostasis alterations. ACT exposure resulted in the greatest adverse effects in the brain, while CBZ was the cause of major element homeostasis and oxidative stress alterations in the liver. Lower LPO levels were observed in the combined treatments compared to single treatments, suggesting interactions and contaminant effect attenuation. This study is the first to evaluate the initial effects of combined CBZ, ACT and Cd exposures in zebrafish, paving the way for further investigations concerning other biomarkers during longer exposure times.


Asunto(s)
Contaminantes Químicos del Agua , Pez Cebra , Animales , Cadmio/toxicidad , Carbamazepina/toxicidad , Homeostasis , Neonicotinoides , Estrés Oxidativo , Contaminantes Químicos del Agua/toxicidad
17.
Waste Manag ; 138: 308-317, 2022 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-34922305

RESUMEN

Leachate is a variable effluent from waste management systems generated during waste collection and on landfills. Twenty-two leachate samples from waste collection trucks and a landfill were collected from March to December 2019 in the municipality of Rio de Janeiro (Brazil) and were analyzed for Human Adenovirus (HAdV), bacterial indicators and physico-chemical parameters. For viral analysis, samples were concentrated by ultracentrifugation and processed for molecular analysis using QIAamp Fast DNA Stool mini kit® for DNA extraction followed by nested-PCR and qPCR/PMA-qPCR TaqMan® system. HAdV was detected by nested-PCR in 100% (9/9) and 83.33% (12/13) of the truck and landfill leachate samples, respectively. Viral concentrations ranged from 8.31 × 101 to 6.68 × 107 genomic copies per 100 ml by qPCR and PMA-qPCR. HAdV species A, B, C, and F were characterized using nucleotide sequencing. HAdV were isolated in A549 culture cells in 100% (9/9) and 46.2% (6/13) from truck and landfill leachate samples, respectively. Regardless of the detection methods, HAdV concentration was predicted by the quantity of total suspended solids. A quantitative microbial risk assessment was performed to measure the probability of gastrointestinal (GI) illness attributable to inadvertent oral ingestion of truck leachate, revealing the higher probability of disease for the direct splashing into the oral cavity (58%) than for the gloved hand-to-mouth (33%). In a scenario where waste collectors do not wear gloves as protective personal equipment, the risk increases to 67%. This is the first study revealing infectious HAdV in solid waste leachate and indicates a potential health risk for waste collectors.


Asunto(s)
Adenovirus Humanos , Eliminación de Residuos , Contaminantes Químicos del Agua , Adenovirus Humanos/genética , Brasil , Humanos , Medición de Riesgo , Residuos Sólidos/análisis , Instalaciones de Eliminación de Residuos , Contaminantes Químicos del Agua/análisis
18.
Environ Sci Pollut Res Int ; 29(16): 23607-23618, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34811610

RESUMEN

Poultry litter is widely applied as a fertilizer even though it is one of the main antibiotic sources to agricultural soils. Long-term sublethal effects (56 days) on the antioxidant system of Eisenia andrei earthworms following exposure to fluoroquinolone-contaminated poultry litter (enrofloxacin + ciprofloxacin) at 5.0, 10, and 20 g kg-1 were evaluated. The following biomarkers were assessed: superoxide dismutase (SOD), catalase (CAT), glutathione-S-transferase (GST), reduced glutathione (GSH), and a lipid peroxidation (LPO) proxy. Significant CAT and SOD increases, and a moderate positive correlation (ρ = 0.67, p < 0.05) between these enzymes was observed. Glutathione-S-transferase levels increased significantly at 10 g kg-1, while GSH exhibited a dose-dependent response at 5.0 mg kg-1 (4-106%), 10 mg kg-1 (28-330 %), and 20 mg kg-1 (45-472%). LPO levels exhibited a decreasing trend with increasing poultry litter concentrations of 8-170% (5.0 g kg-1), 7-104% (10 mg kg-1), and 3-6% (20 mg kg-1). A principal component analysis (PCA) highlighted increased SOD and CAT activities, possibly due to increased reactive oxygen species (ROS) concentrations. Biological health status assessments based on the biomarker response index indicate major alterations in the first month of exposure and becoming moderate in the second month. These findings indicate an antioxidant system attenuation trend. It is possible, however, that successive poultry litter applications may reduce the long-term recovery capacity of the evaluated biomarkers.


Asunto(s)
Oligoquetos , Contaminantes del Suelo , Animales , Antibacterianos/farmacología , Antioxidantes/metabolismo , Catalasa/metabolismo , Glutatión/metabolismo , Glutatión Transferasa/metabolismo , Estado de Salud , Peroxidación de Lípido , Oligoquetos/metabolismo , Estrés Oxidativo , Aves de Corral , Contaminantes del Suelo/análisis , Superóxido Dismutasa/metabolismo
19.
Environ Pollut ; 287: 117351, 2021 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-34000669

RESUMEN

It is estimated that approximately 0.4% of the total leachate produced in a landfill is destined for treatment plants, while the rest can reach the soil and groundwater. In this context, this study aimed to perform leachate toxicity evaluations through immune system cytotoxic assessments, genotoxic (comet assay) appraisals and antioxidant system (superoxide dismutase - SOD; catalase - CAT, glutathione-S-transferase - GST; reduced glutathione - GSH and metallothionein - MT) evaluations in Eisenia andrei earthworms exposed to a Brazilian leachate for 77 days. The leachate sample contained high organic matter (COD - 10,630 mg L-1) and ammoniacal nitrogen (2398 mg L-1), as well as several metals, including Ca, Cr, Fe, Mg, Ni and Zn. Leachate exposure resulted in SOD activity alterations and increased CAT activity and MT levels. Decreased GST activity and GSH levels were also observed. Antioxidant system alterations due to leachate exposure led to increased malondialdehyde levels as a result of lipid peroxidation after the 77 day-exposure. An inflammatory process was also observed in exposed earthworms, evidenced by increased amoebocyte density, and DNA damage was also noted. This study demonstrates for the first time that sublethal effect assessments in leachate-exposed earthworms comprise an important tool for solid waste management.


Asunto(s)
Oligoquetos , Contaminantes del Suelo , Contaminantes Químicos del Agua , Animales , Antioxidantes , Catalasa/metabolismo , Daño del ADN , Malondialdehído , Oligoquetos/metabolismo , Estrés Oxidativo , Contaminantes del Suelo/análisis , Contaminantes del Suelo/toxicidad , Superóxido Dismutasa/metabolismo , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/toxicidad
20.
J Environ Manage ; 285: 112029, 2021 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-33578208

RESUMEN

Leachate is difficult to biodegrade, and presents variable physical, chemical and biological characteristics, as well as high toxicological potential for soil, groundwater and water bodies. In this context, untreated leachate toxicity was evaluated through acute and chronic exposures in Eisenia andrei earthworms. Physico-chemical leachate characterizations indicate a complex composition, with high organic matter (COD - 10,634 mg L-1) and ammoniacal nitrogen (2388 mg L-1) concentrations. Metals with carcinogenic potential, such as Cr, As and Pb, were present at 0.60, 0.14 and 0.01 µg L-1, respectively and endocrine disrupting compounds were detected in estradiol equivalents of 660 ± 50 ng L-1. Acute tests with Eisenia andrei indicated an LC50 (72 h) of 1.3 ± 0.1 µL cm-2 in a filter paper contact test and 53.9 ± 1.3 mL kg-1 in natural soil (14 days). The EC50 in a behavioral test was estimated as 31.6 ± 6.8 mL kg-1, indicating an escape effect for concentrations ranging from 35.0 to 70.0 mL kg-1 and habitat loss from 87.5 mL kg-1 of leachate exposure. Chronic exposure (56 days) led to reproduction effects, resulting in a 4-fold decreased cocoon production and 7-fold juvenile decrease. This effect was mainly attributed to the possible presence of endocrine disrupting compounds. An estimated NOAEL of 1.7 mL L-1 and LOAEL of 3.5 mL L-1 were estimated for earthworms exposed to the assessed effluent. Extremely high-risk quotients (RQ ≥ 1) were estimated based on leachate application in irrigation. Thus, adequate municipal solid waste management is paramount, especially with regard to generated by-products, which can result in high toxicological risks for terrestrial organisms.


Asunto(s)
Oligoquetos , Contaminantes del Suelo , Contaminantes Químicos del Agua , Animales , Reproducción , Medición de Riesgo , Contaminantes del Suelo/análisis , Contaminantes del Suelo/toxicidad , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/toxicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA