Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Dalton Trans ; 48(3): 1108-1117, 2019 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-30605200

RESUMEN

Owing to their lipophilic nature and chemical stability, ferrocene and its derivatives have been widely explored as antimicrobial agents, in combination with other active chemical 'war heads'. A prime example is ferroquine, an analogue of chloroquine obtained by covalently bonding ferrocene to 4-aminoquinoline, which possesses superior efficacy against multi-drug resistant malaria parasites. Herein, we explored the possibility of combining the ferrocenyl moiety with a phosphine unit and the subsequent inclusion of gold(i) to derive a molecular framework with demonstrated potential in inhibiting parasitic diseases. A library of 24 compounds consisting of 5 non-functionalized ferrocenyl enones and 19 ferrocenyl phosphine derivatives were synthesized, verified and tested against Plasmodium (P.) falciparum, which allowed us to identify compounds with low micromolar potency against both normal and chloroquine-resistant strains. Through flow cytometry combined with microscopic examination of Giemsa-stained thin smears, we observed that most of the active compounds interfered with trophozoite development as well as schizont maturation. The gold complex, namely G3, derived from the hydrophosphination of the terminal furan bearing an enone substrate showed the highest inhibitory potential. We demonstrate that G3 is affecting the parasite's metabolic processes as evident from the swollen digestive vacuole. Furthermore, G3 significantly affected heme de-toxification as determined through the ß-hematin assay, which caused apparent oxidative stress on parasites leading to death. Collectively, these results point out the potential of gold-conjugated ferrocenyl phosphine derivatives as antimalarials targeting the digestive vacuole function and metabolism of parasites.


Asunto(s)
Antimaláricos/farmacología , Compuestos Ferrosos/farmacología , Malaria Falciparum/tratamiento farmacológico , Metalocenos/farmacología , Fosfinas/farmacología , Plasmodium falciparum/efectos de los fármacos , Vacuolas/efectos de los fármacos , Animales , Antimaláricos/síntesis química , Antimaláricos/química , Relación Dosis-Respuesta a Droga , Diseño de Fármacos , Compuestos Ferrosos/síntesis química , Compuestos Ferrosos/química , Oro/química , Oro/farmacología , Hemoproteínas/antagonistas & inhibidores , Hemoproteínas/biosíntesis , Células Endoteliales de la Vena Umbilical Humana , Humanos , Malaria Falciparum/microbiología , Metalocenos/síntesis química , Metalocenos/química , Estructura Molecular , Estrés Oxidativo/efectos de los fármacos , Pruebas de Sensibilidad Parasitaria , Fosfinas/síntesis química , Fosfinas/química , Plasmodium falciparum/crecimiento & desarrollo , Plasmodium falciparum/metabolismo , Especies Reactivas de Oxígeno/análisis , Especies Reactivas de Oxígeno/metabolismo , Relación Estructura-Actividad , Vacuolas/metabolismo
2.
Chem Asian J ; 13(19): 2829-2833, 2018 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-30022614

RESUMEN

Asymmetric addition of diarylphosphines to oxa- and azabicyclic alkenes proceeded in the presence of a chiral phosphapalladacycle catalyst and a mild acid at room temperature to give exclusively the enantioenriched addition products in excellent yields and good selectivities. Three new chiral carbon centers were generated stereoselectively by the catalytic hydrophosphination reaction.

3.
ACS Omega ; 3(8): 8945-8951, 2018 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-31459027

RESUMEN

Hitherto inaccessible multisubstituted thiochroman derivatives were constructed via the one-pot reaction of thiophenols with allylic alcohols catalyzed by 0.2 equiv triflic acid under metal-free conditions. A variety of thiochroman derivatives can be obtained by this straightforward protocol that allows the introduction of up to four substituents at various locations on the thiochroman skeleton. Relative conformations of all isolated products were confirmed by NOESY NMR studies, and a stepwise mechanism, proceeding via an allylic substitution-intramolecular cyclization protocol, is proposed on the basis of NMR experiments.

4.
RSC Adv ; 8(51): 28960-28968, 2018 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-35547965

RESUMEN

The development of new organometallic compounds as anticancer agents is currently an active area of research. Here, we report the design, synthesis and characterization of a panel of 10 new ferrocenyl-phosphine derivatives (FD1-FD10) and the analysis of their anti-proliferative activities in hematolymphoid cells representing non-Hodgkin cutaneous T-cell lymphoma (CTCL). The gold-coordinated ferrocenyl-phosphine complex FD10 exhibited a significant and dose-dependent cytotoxicity in 4 different CTCL cell lines - HuT78, HH, MJ and MyLa. FD10 concentrations causing 50% cell growth inhibition (IC50) of HuT78, HH, MJ and MyLa cells at 24 h were recorded to be 5.55 ± 0.20, 7.80 ± 0.09, 3.16 ± 0.10 and 6.46 ± 0.24 µM respectively. Further mechanistic studies showed that FD10 induced apoptosis in CTCL cells by an intrinsic pathway mediated via the activation of caspase-3 and poly(ADP-ribose)polymerase. It suppressed the expression and activity of STAT3 oncoprotein in CTCL cells. FD10 caused robust G0/G1 phase cell cycle arrest and reduced the expression levels of Akt S473 phosphorylation and c-Myc, both are key cell cycle regulator proteins. Taken together, this study highlights anticancer properties of the ferrocenyl-phosphine gold organometallic complex FD10 and suggests that further development of this novel class of molecule may contribute to new drug discovery for certain hematolymphoid malignancies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA