Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 16(27): 34947-34961, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38938019

RESUMEN

Gas diffusion layers (GDLs) are usually coated with a hydrophobic agent to achieve a delicate balance between liquid and gas phases to maximize mass transport. Yet, most GDL numerical models to date have assumed an average contact angle for all materials, thereby eliminating the possibility of studying the role of the polytetrafluoroethylene (PTFE) content. This study introduces two mixed wettability algorithms to predict the mixed wetting behavior of GDLs composed of multiple materials. The algorithms employ contact angle and distance to solid materials to determine the critical capillary pressure for each pore voxel. The application of the algorithms to the estimation of capillary pressure vs saturation curves for two GDLs, namely, a micro-computed tomography (µ-CT) reconstructed SGL 39BA GDL and a stochastically reconstructed Toray 120C GDL, showed that, in agreement with experimental data, the addition of PTFE resulted in a decrease in saturation at a given capillary pressure. For Toray-120C, the mixed wettability model was capable of reproducing experimentally observed features in the intrusion curve at low saturation that could not be reproduced with a single wettability model, providing a clear link between PTFE coverage and intrusion at low saturation. Numerical results also predicted an increased breakthrough pressure and a decrease in saturation with increasing PTFE, in agreement with experimental observations. The decreased saturation at breakthrough improves gas transport through the layer while maintaining the layer's ability to remove water. Diffusivity simulations confirm the increase in diffusivity at breakthrough with increasing PTFE, thereby providing a rationale for the addition of PTFE, as well as for the optimal amount. This study emphasizes the importance of multimaterial wetting models and calls for more detailed investigations into PTFE and ionomer distributions in GDLs and catalyst layers, respectively.

2.
Sci Rep ; 13(1): 4280, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36922565

RESUMEN

Reducing precious metal loading in the anodic catalyst layer (CL) is indispensable for lowering capital costs and enabling the widespread adoption of polymer electrolyte water electrolysis. This work presents the first three-dimensional reconstruction of a TiO2-supported IrO2 based core shell CL (3 mgIrO2/cm2), using high-resolution X-ray ptychographic tomography at cryogenic temperature of 90 K. The high data quality and phase sensitivity of the technique have allowed the reconstruction of all four phases namely pore space, IrO2, TiO2 support matrix and the ionomer network, the latter of which has proven to be a challenge in the past. Results show that the IrO2 forms thin nanoporous shells around the TiO2 particles and that the ionomer has a non-uniform thickness and partially covers the catalyst. The TiO2 particles do not form a percolating network while all other phases have high connectivity. The analysis of the CL ionic and electronic conductivity shows that for a dry CL, the ionic conductivity is orders of magnitudes lower than the electronic conductivity. Varying the electronic conductivity of the support phase by simulations, reveals that the conductivity of the support does not have a considerable impact on the overall CL electrical conductivity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA