Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sensors (Basel) ; 24(4)2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38400385

RESUMEN

This study provides a comprehensive analysis of the combination of Genetic Algorithms (GA) and XGBoost, a well-known machine-learning model. The primary emphasis lies in hyperparameter optimization for fraud detection in smart grid applications. The empirical findings demonstrate a noteworthy enhancement in the model's performance metrics following optimization, particularly emphasizing a substantial increase in accuracy from 0.82 to 0.978. The precision, recall, and AUROC metrics demonstrate a clear improvement, indicating the effectiveness of optimizing the XGBoost model for fraud detection. The findings from our study significantly contribute to the expanding field of smart grid fraud detection. These results emphasize the potential uses of advanced metaheuristic algorithms to optimize complex machine-learning models. This work showcases significant progress in enhancing the accuracy and efficiency of fraud detection systems in smart grids.

2.
Materials (Basel) ; 16(2)2023 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-36676486

RESUMEN

Selective laser sintering (SLS) is one of the key additive manufacturing technologies that can build any complex three-dimensional structure without the use of any special tools. Thermal modeling of this process is required to anticipate the quality of the manufactured parts by assessing the microstructure, residual stresses, and structural deformations of the finished product. This paper proposes a framework for the thermal simulation of the SLS process based on the discrete element method (DEM) and numerically generated in Python. This framework simulates a polyamide 12 (PA12) particle domain to describe the temperature evolution in this domain using simple interaction laws between the DEM particles and considering the exchange of these particles with the boundary planes. The results obtained and the comparison with the literature show that the DEM frame accurately captures the temperature distribution in the domain scanned by the laser. The effect of laser power and projection time on the temperature of PA12 particles is investigated and validated with experimental settings to show the reliability of DEM in simulating powder-based additive manufacturing processes.

3.
Sensors (Basel) ; 23(2)2023 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-36679530

RESUMEN

Understanding actions in videos remains a significant challenge in computer vision, which has been the subject of several pieces of research in the last decades. Convolutional neural networks (CNN) are a significant component of this topic and play a crucial role in the renown of Deep Learning. Inspired by the human vision system, CNN has been applied to visual data exploitation and has solved various challenges in various computer vision tasks and video/image analysis, including action recognition (AR). However, not long ago, along with the achievement of the transformer in natural language processing (NLP), it began to set new trends in vision tasks, which has created a discussion around whether the Vision Transformer models (ViT) will replace CNN in action recognition in video clips. This paper conducts this trending topic in detail, the study of CNN and Transformer for Action Recognition separately and a comparative study of the accuracy-complexity trade-off. Finally, based on the performance analysis's outcome, the question of whether CNN or Vision Transformers will win the race will be discussed.


Asunto(s)
Redes Neurales de la Computación , Visión Ocular , Humanos , Reconocimiento en Psicología , Computadores , Procesamiento de Imagen Asistido por Computador/métodos
4.
Artículo en Inglés | MEDLINE | ID: mdl-33561058

RESUMEN

In this paper, a new flexible wearable radio frequency identification (RFID) five-shaped slot patch tag placed on the human arm is designed for ultra-high frequency (UHF) healthcare sensing applications. The compact proposed tag consists of a patch structure provided with five shaped slot radiators and a flexible substrate, which minimize the human body's impact on the antenna radiation performance. We have optimized our designed tag using the particle swarm optimization (PSO) method with curve fitting within MATLAB to minimize antenna parameters to achieve a good return loss and an attractive radiation performance in the operating band. The PSO-optimized tag's performance has been examined over the specific placement in some parts of the human body, such as wrist and chest, to evaluate the tag response and enable our tag antenna conception in wearable biomedical sensing applications. Finally, we have tested the robustness of this tag by evaluating its sensitivity as a function of the antenna radiator placement over the ground plane or by shaping the ground plane substrate for the tag's position from the human body. Our numerical results show an optimal tag size with good matching features and promising read ranges near the human body.


Asunto(s)
Dispositivo de Identificación por Radiofrecuencia , Dispositivos Electrónicos Vestibles , Algoritmos , Tecnología Biomédica , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA