Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Micromachines (Basel) ; 13(10)2022 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-36295953

RESUMEN

Additional degrees of freedom in a fractional-order control strategy for power electronic converters are well received despite the lack of reliable tuning methods. Despite artificial/swarm intelligence techniques have been used to adjust controller parameters to improve more than one characteristic/property at the same time, smart tuning not always leads to realizable structures or reachable parameter values. Thus, adjustment boundaries to ensure controller viability are needed. In this manuscript the fractional-order approach is described in terms of El-Khazali biquadratic module, which produces the lowest order approximation, instead of using a definition. A two-modes controller structure is synthesize depending on uncontrolled plant needs and parameters are adjusted through particle swarm and genetic optimization algorithms for comparison. Two error-based minimization criteria are used to consider output performance into the process. Two restrictions complement the optimization scheme, one seeks to ensure desired robustness while the other prevents from synthesizing a high-gain controller. Optimization results showed similarity between minima obtained and significant difference between parameters of those controller optimized without the proposed constraints was determined. Numerical and experimental results are provide to validate proposed approach effectiveness. Effective regulation, good tracking characteristic and robustness in the presence of load variations are the main results.

2.
Micromachines (Basel) ; 12(6)2021 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-34063909

RESUMEN

Viability of a fractional-order proportional-integral-derivative (PID) approximation to regulate voltage in buck-boost converters is investigated. The converter applications range not only to high-power ones but also in micro/nano-scale systems from biomedicine for energy management/harvesting. Using a classic closed-loop control diagram the controller effectiveness is determined. Fractional calculus is considered due to its ability at modeling different types of systems accurately. The non-integer approach is integrated into the control strategy through a Laplacian operator biquadratic approximation to generate a flat phase curve in the system closed-loop frequency response. The controller synthesis considers both robustness and closed-loop performance to ensure a fast and stable regulation characteristic. A simple tuning method provides the appropriate gains to meet design requirements. The superiority of proposed approach, determined by comparing the obtained time constants with those from typical PID controllers, confirms it as alternative to controller non-minimum phases systems. Experimental realization of the resulting controller, implemented through resistor-capacitor (RC) circuits and operational amplifiers (OPAMPs) in adder configuration, confirms its effectiveness and viability.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA