Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Acta Biomater ; 92: 48-59, 2019 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-31108258

RESUMEN

To maintain functionality during in situ vascular regeneration, the rate of implant degradation should be closely balanced by neo-tissue formation. It is unknown, however, how the implant's functionality is affected by the degradation of the polymers it is composed of. We therefore examined the macro- and microscopic features as well as the mechanical performance of vascular scaffolds upon in vitro enzymatic degradation. Three candidate biomaterials with supramolecularly interacting bis-urea (BU) hard blocks ('slow-degrading' polycarbonate-BU (PC-BU), 'intermediate-degrading' polycarbonate-ester-BU (PC(e)-BU), and 'fast-degrading' polycaprolactone-ester-BU (PCL-BU)) were synthesized and electrospun into microporous scaffolds. These materials possess a sequence-controlled macromolecular structure, so their susceptibility to degradation is tunable by controlling the nature of the polymer backbone. The scaffolds were incubated in lipase and monitored for changes in physical, chemical, and mechanical properties. Remarkably, comparing PC-BU to PC(e)-BU, we observed that small changes in macromolecular structure led to significant differences in degradation kinetics. All three scaffold types degraded via surface erosion, which was accompanied by fiber swelling for PC-BU scaffolds, and some bulk degradation and a collapsing network for PCL-BU scaffolds. For the PC-BU and PC(e)-BU scaffolds this resulted in retention of mechanical properties, whereas for the PCL-BU scaffolds this resulted in stiffening. Our in vitro study demonstrates that vascular scaffolds, electrospun from sequence-controlled supramolecular materials with varying ester contents, not only display different susceptibilities to degradation, but also degrade via different mechanisms. STATEMENT OF SIGNIFICANCE: One of the key elements to successfully engineer vascular tissues in situ, is to balance the rate of implant degradation and neo-tissue formation. Due to their tunable properties, supramolecular polymers can be customized into attractive biomaterials for vascular tissue engineering. Here, we have exploited this tunability and prepared a set of polymers with different susceptibility to degradation. The polymers, which were electrospun into microporous scaffolds, displayed not only different susceptibilities to degradation, but also obeyed different degradation mechanisms. This study illustrates how the class of supramolecular polymers continues to represent a promising group of materials for tissue engineering approaches.


Asunto(s)
Prótesis Vascular , Lipasa/metabolismo , Ingeniería de Tejidos/métodos , Andamios del Tejido/química , Rastreo Diferencial de Calorimetría , Ensayo de Materiales , Peso Molecular , Reproducibilidad de los Resultados , Temperatura
2.
Biomech Model Mechanobiol ; 14(3): 603-13, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25319256

RESUMEN

The anisotropic collagen architecture of an engineered cardiovascular tissue has a major impact on its in vivo mechanical performance. This evolving collagen architecture is determined by initial scaffold microstructure and mechanical loading. Here, we developed and validated a theoretical and computational microscale model to quantitatively understand the interplay between scaffold architecture and mechanical loading on collagen synthesis and degradation. Using input from experimental studies, we hypothesize that both the microstructure of the scaffold and the loading conditions influence collagen turnover. The evaluation of the mechanical and topological properties of in vitro engineered constructs reveals that the formation of extracellular matrix layers on top of the scaffold surface influences the mechanical anisotropy on the construct. Results show that the microscale model can successfully capture the collagen arrangement between the fibers of an electrospun scaffold under static and cyclic loading conditions. Contact guidance by the scaffold, and not applied load, dominates the collagen architecture. Therefore, when the collagen grows inside the pores of the scaffold, pronounced scaffold anisotropy guarantees the development of a construct that mimics the mechanical anisotropy of the native cardiovascular tissue.


Asunto(s)
Colágeno/metabolismo , Ingeniería de Tejidos , Andamios del Tejido , Microscopía Electrónica de Rastreo
3.
J Mater Sci Mater Med ; 21(3): 871-8, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19898924

RESUMEN

With their excellent biocompatibility and relatively high mechanical strength, polylactides are attractive candidates for application in load-bearing, resorbable implants. Pre-clinical studies provided a proof of principle for polylactide cages as temporary constructs to facilitate spinal fusion, and several cages already made it to the market. However, also failures have been reported: clinical studies reported considerable amounts of subsidence with lumbar spinal fusion cages, and in an in vivo goat study, polylactide spinal cages failed after only three months of implantation, although mechanical testing had predicted sufficient strength for at least eight months. The failures appear to be related to the long-term performance of polylactides under static loading conditions, a phenomenon which is common to all glassy polymers and finds its origin in stress-activated molecular mobility leading to plastic flow. This paper reviews the mechanical properties and deformation kinetics of amorphous polylactides. Compression tests were performed with various strain rates, and static stress experiments were done to determine time-to failure. Pure PLLA appeared to have a higher yield strength than its co-polymers with D: -lactide, but the kinetic behaviour of the polymers was the same: an excellent short-term strength at higher loading rates, but lifetime under static stress is rather poor. As spinal implants need to maintain mechanical integrity for a period of at least six months, this has serious implications for the clinical application of amorphous polylactides in load bearing situations. It is recommended that standards for mechanical testing of implants made of polymers be revised in order to consider this typical time-dependent behaviour.


Asunto(s)
Materiales Biocompatibles/química , Poliésteres/química , Polímeros/química , Implantes Absorbibles , Fuerza Compresiva , Cinética , Vértebras Lumbares/patología , Peso Molecular , Estrés Mecánico , Temperatura , Factores de Tiempo , Soporte de Peso
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA