RESUMEN
Biosynthesized silver nanoparticles (AgNPs) are widely used in varied applications, which are morphology dependent. Consequently, a morphology-controlled synthesis is mandatory. Although there are several studies focused on the plant extract-based biosynthesis of metallic nanoparticles, the use of extracts obtained from agro-wastes is scant. Furthermore, information regarding morphology modification through the use of additional agents is even more scarce. Thus, in this study, AgNPs were synthesized using a malt extract (ME) obtained from an artisanal beer brewing process residue. Additionally, sodium chloride (NaCl), gum arabic (GA), and talc (T) were used in an attempt to modify the morphology of AgNPs. XRD, DLS, SEM, and TEM results demonstrate that stable AgNPs of different sizes and shapes were synthesized. FTIR, HPLC analysis, and the quantification of total proteins, free amino acids, reducing sugars, and total polyphenols before and after AgNPs synthesis showed that ME biomolecules allowed them to act as a source of reducing and stabilizing agents. Therefore, this study provides evidence that ME can be successfully used to biosynthesize AgNPs. Additionally, the antibacterial activity of AgNPs against Gram-negative and Gram-positive bacteria was evaluated. Results indicate that AgNPs show a higher antibacterial activity against Gram-positive bacteria.
Asunto(s)
Acacia , Nanopartículas del Metal , Cerveza , Plata , Antibacterianos/farmacología , Cloruro de SodioRESUMEN
In a previous review, the experiments of American chemist W.O. Atwater were critically examined, with the findings demonstrating certain weaknesses that could compromise the validity of the values currently used for metabolizable energy. An examination of published works on the heat of combustion of carbohydrates reveals 2 types of weaknesses: the inaccuracy and imprecision of the calorimetric data used, and the averaging procedure employed to estimate such representative values. The present review focuses on the first type of weakness, namely the inaccuracy and imprecision of the calorimetric data used in previous studies. An exhaustive bibliographic search yielded almost 100 heat of combustion values for some of the 6 main carbohydrates contained in plant-source foods (glucose, fructose, sucrose, maltose, starch, and cellulose). These heats of combustion were subjected to rigorous statistical analysis to propose the following for each carbohydrate: (1) an interval (termed a bibliographic interval) that very likely includes the actual heat of combustion value and (2) a "representative value" (calculated to produce the minimum level of inaccuracy). In addition, an estimation of the maximum level of inaccuracy that could be expected when using such a representative value is reported.
Asunto(s)
Carbohidratos de la Dieta , Plantas Comestibles/química , Calorimetría , CalorRESUMEN
Spirulina platensis contains several biologically active compounds, some of them with antioxidant activity. Nevertheless, not all of these compounds have been identified to date. As a first step to achieving such identification, a methodology to perform two-dimensional thin layer chromatography bioautographies on silica gel thin layer chromatography plates was proposed. Starting with a reference binary system, 5 other binary systems were tested, in which the relative polarity was systematically increased. To further improve the separation behavior, a phase modifier (NH4OH) was used. The best separation results were obtained with the isopropyl alcohol/ethyl acetate/NH4OH ternary system. This experimental system allowed four well-resolved spots showing antioxidant activity as well as two additional areas with mixtures containing antioxidant compounds. Although the proposed methodology was designed with a specific application, it would be predictable that its field of use could be considerably greater, making the convenient modifications on the solvent polarity and "masking level" produced by the ammonium derivatives.