Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Cells Tissues Organs ; 204(3-4): 137-149, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28803236

RESUMEN

It has been reported that carbon nanotubes (CNTs) serve as nucleation sites for the deposition of bone matrix and cell proliferation. Here, we evaluated the effects of multi-walled CNTs (MWCNTs) on bone repair of rat tibiae. Furthermore, because sodium hyaluronate (HY) accelerates bone restoration, we associated CNTs with HY (HY-MWCNTs) in an attempt to boost bone repair. The bone defect was created by a 1.6-mm-diameter drill. After 7 and 14 days, tibiae were processed for histological and morphometric analyses. Immunohistochemistry was used to evaluate the expression of vascular endothelial growth factor (VEGF) in bone defects. Expression of osteocalcin (OCN), bone morphogenetic protein-2 (BMP-2), and collagen I (Col I) was assessed by real-time PCR. Histomorphometric analysis showed a similar increase in the percentage of bone trabeculae in tibia bone defects treated with HY and HY-MWCNTs, and both groups presented more organized and thicker bone trabeculae than nontreated defects. Tibiae treated with MWCNTs or HY- MWCNTs showed a higher expression of VEGF. Treatment with MWCNTs or HY-MWCNTs increased the expression of molecules involved in the bone repair process, such as OCN and BMP-2. Also, HY- and MWCNT-treated tibiae had an increased expression of Col I. Thus, it is tempting to conclude that CNTs associated or not with other materials such as HY emerged as a promising biomaterial for bone tissue engineering.


Asunto(s)
Huesos/metabolismo , Ácido Hialurónico/farmacología , Nanotubos de Carbono/análisis , Factor A de Crecimiento Endotelial Vascular/metabolismo , Cicatrización de Heridas/fisiología , Animales , Ratas , Ratas Wistar
2.
J Strength Cond Res ; 30(8): 2324-9, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26705067

RESUMEN

Sá, MA, Matta, TT, Carneiro, SP, Araujo, CO, Novaes, JS, and Oliveira, LF. Acute effects of different methods of stretching and specific warm-ups on muscle architecture and strength performance. J Strength Cond Res 30(8): 2324-2329, 2016-The purpose of the study was to investigate the acute effects of 2 stretching interventions, proprioceptive neuromuscular facilitation (PNF) and passive static stretching (PSS), and a specific warm-up (SW) on the strength and architecture of the vastus laterallis and biceps femoris muscles in a subsequent performance on a strength training session (STS). Musculoskeletal ultrasound images were acquired from 9 men before and immediately after stretchings or a SW, and 10 minutes after a STS. The STS consisted of the following exercises: leg extension, leg curl, leg press, and hack machine squat. The PNF resulted in lower performance for all situations. The PSS and SW improved performance for the leg press compared with the PNF and controls (CSs). For the hack machine squat, SWs resulted in higher performance than stretching conditions. The vastus lateralis muscle fascicle length (FL) increases after a STS for PNF. The biceps femoris muscle showed a higher pennation angle 10 minutes after the STS for PSS; the FL increases immediately after PSS and then decreases 10 minutes after the STS for PSS. As per our results, the SWs should be performed before STSs, whereas PNF stretching should not be prescribed because this condition impairs subsequent performance. These results may assist health professionals in prescribing resistance training.


Asunto(s)
Fuerza Muscular/fisiología , Ejercicios de Estiramiento Muscular/métodos , Músculo Esquelético/fisiología , Ejercicio de Calentamiento/fisiología , Adulto , Humanos , Masculino , Músculo Esquelético/diagnóstico por imagen , Ultrasonografía/métodos , Adulto Joven
3.
J Hum Kinet ; 45: 177-85, 2015 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-25964821

RESUMEN

This study aimed to investigate the acute effects of passive static and ballistic stretching on maximal repetition performance during a resistance training session (RTS). Nine male subjects underwent three experimental conditions: ballistic stretching (BS); passive static stretching (PSS); and a specific warm-up (SW). The RTS was composed of three sets of 12RM for the following exercises: leg press 45 (LP), leg extension (LE), leg curl (LC), and plantar flexors (PF). Performance of six sessions was assessed 48 hours apart. The first visit consisted of a familiarization session including stretching methods and exercises used in the RTS. On the second and third visit, a strength test and retest were performed. During the fourth to the sixth visit, the volunteers randomly performed the following protocols: BS+RTS; PSS+RTS; or SW+RTS. For the sum of the RM number of each three-set exercise, significant differences were found between PSS vs. SW for the LP (p = 0.001); LE (p = 0.005); MF (p = 0.001); and PF (p = 0.038). For the comparison between the methods of stretching PSS vs. BS, significant differences were found only for the FP (p = 0.019). When analyzing the method of stretching BS vs. SW, significant differences were found for the LP (p = 0.014) and MF (p = 0.002). For the total sum of the RM number of three sets of the four exercises that composed the RTS, significant differences were observed (p < 0.05) in the following comparisons: PPS vs. SW (p = 0.001), PPS vs. BS (p = 0.008), and BS vs. SW (p = 0.002). Accordingly, the methods of passive static and ballistic stretching should not be recommended before a RTS.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA