Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Chemosphere ; 247: 126098, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32088008

RESUMEN

The release of concentrated acid solutions by chemical accidents is disastrous to our environmental integrity. Alkaline agents applied to remedy the acid spill catastrophe may lead to secondary damages such as vaporization or spread out of the fumes unless substantial amount of neutralization heat is properly controlled. Using a rigorous thermodynamic formalism proposed by Pitzer to account short-range ion interactions and various subsidiary reactions, we develop a systematic computational model enabling quantitative prediction of reaction heat and the temperature change over neutralization of strongly concentrated acid solutions. We apply this model to four acid solutions (HCl, HNO3, H2SO4, and HF) of each 3 M-equivalent concentration with two neutralizing agents of calcium hydroxide (Ca(OH)2) and sodium bicarbonate (NaHCO3). Predicted reaction heat and temperature are remarkably consistent with the outcomes measured by our own experiments, showing a linear correlation factor R2 greater than 0.98. We apply the model to extremely concentrated acid solutions as high as 50 wt% where an experimental approach is practically restricted. In contrast to the extremely exothermic Ca(OH)2 agent, NaHCO3 even lowers solution temperatures after neutralization reactions. Our model enables us to identify a promising neutralizer NaHCO3 for effectively controlling concentrated acid spills and may be useful for establishment of proper strategy for other chemical accidents.


Asunto(s)
Ácidos , Liberación de Peligros Químicos , Simulación por Computador , Restauración y Remediación Ambiental/métodos , Hidróxido de Calcio , Calor , Bicarbonato de Sodio
2.
Nanoscale ; 9(31): 11035-11046, 2017 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-28580999

RESUMEN

The recent development of strain sensor devices which can actively monitor human body motion has attracted tremendous attention, for application in various wearable electronics and human-machine interfaces. In this study, as materials for strain sensor devices, we exploit the low-cost, carbon-based, 3-dimensional (3D) printable composite dough. The dough is prepared via a chemical method based on the formation of electrostatic assemblies between 1-dimensional, amine-functionalized, multi-walled carbon nanotubes and 2-dimensional graphene oxides. The resulting composite dough has an extremely high storage modulus, which allows a vertically-stackable, 3D printing process for fabricating strain sensor devices on various dense, porous and structured substrates. The device performance parameters, including gauge factor, hysteresis, linearity, and overshooting behavior are found to be adjustable by controlling the printing process parameters. The fabricated strain sensor devices demonstrate the ability to distinguish actual human body motions. A high gauge factor of over 70 as well as other excellent device performance parameters are achievable for the printed sensor devices, and even small strains, below 1%, are also detectable by the fabricated sensor devices.


Asunto(s)
Grafito , Movimiento , Nanotubos de Carbono , Impresión Tridimensional , Dispositivos Electrónicos Vestibles , Humanos
3.
ACS Appl Mater Interfaces ; 9(16): 14058-14066, 2017 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-28387501

RESUMEN

In recent decades, solution-processable, printable oxide thin-film transistors have garnered a tremendous amount of attention given their potential for use in low-cost, large-area electronics. However, printable metallic source/drain electrodes undergo undesirable electrical/thermal migration at an interfacial stack of the oxide semiconductor and metal electrode. In this study, we report oleic acid-capped Ag nanoparticles that effectively suppress the significant Ag migration and facilitate high field-effect mobilities in oxide transistors. The origin of the role of surface-capped Ag nanoparticles is clarified with comparative studies based on X-ray photoelectron spectroscopy and X-ray absorption spectroscopy.

4.
Nanoscale ; 9(16): 5072-5084, 2017 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-28181617

RESUMEN

The use of 3-dimensional (3D) printable conductive materials has gained significant attention for various applications because of their ability to form unconventional geometrical architectures that cannot be realized with traditional 2-dimensional printing techniques. To resolve the major requisites in printed electrodes for practical applications (including high conductivity, 3D printability, excellent adhesion, and low-temperature processability), we have designed a chemically-reinforced multi-dimensional filler system comprising amine-functionalized carbon nanotubes, carboxyl-terminated silver nanoparticles, and Ag flakes, with the incorporation of a thermoplastic polystyrene-polyisoprene-polystyrene (SIS) triblock copolymer. It is demonstrated that both high conductivity, 22 939 S cm-1, and low-temperature processability, below 80 °C, are achievable with the introduction of chemically anchored carbon-to-metal hybrids and suggested that the highly viscous composite fluids employing the characteristic thermoplastic polymer are readily available for the fabrication of various unconventional electrode structures by a simple dispensing technique. The practical applicability of the 3D-printable highly conductive composite paste is confirmed with the successful fabrication of wireless power transmission modules on substrates with extremely uneven surface morphologies.

5.
ACS Appl Mater Interfaces ; 8(44): 29858-29865, 2016 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-27762139

RESUMEN

In this study, we report for the first time a simple bar-coating process of soluble metal oxide semiconductors, consuming the 0.1 g of precursor solution in 4 in. sized devices with a cost of only $0.05. To resolve the issue of critical degradation in device performance observable in slow-evaporation-based film formation processes, we incorporate the unprecedentedly developed, poly(acrylic acid)-decorated multiwalled carbon nanotubes (MWNTs) in oxide semiconductors. It is demonstrated that a field-effect mobility is improved to the value of 7.34 cm2/(V s) (improvement by a factor of 2) without any critical variation in threshold voltage and on/off current ratio.

6.
Nanoscale ; 7(9): 3997-4004, 2015 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-25626472

RESUMEN

Recently, various functional devices based on printing technologies have been of paramount interest, owing to their characteristic processing advantages along with excellent device performance. In particular, printable metallic electrodes have drawn attention in a variety of optoelectronic applications; however, research into printable metallic nanoparticles has been limited mainly to the case of an environmentally stable Ag phase. Despite its earth-abundance and highly conductive nature, the Cu phase, to date, has not been exploited as an ambient atmosphere-processable, printable material due to its critical oxidation problem in air. In this study, we demonstrate a facile route for generating highly conductive, flexible Cu electrodes in air by introducing the well-optimized photonic sintering at a time frame of 10(-3) s, at which the photon energy, rather than conventional thermal energy, is instantly provided. It is elucidated here how the surface oxide-free, printed Cu particulate films undergo chemical structural/microstructural evolution depending on the instantly irradiated photon energy, and a successful demonstration is provided of large-area, flexible, printed Cu conductors on various substrates, including polyimide (PI), polyethersulfone (PES), polyethylene terephthalate (PET), and paper. The applicability of the resulting printed Cu electrodes is evaluated via implementation into both flexible capacitor devices and indium-gallium-zinc oxide (IGZO) flexible thin-film transistors.

7.
J Nanosci Nanotechnol ; 13(8): 5661-4, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23882813

RESUMEN

Aqueous Cu nanoparticles are synthesized using a reducing agent and surface capping molecule which prevents the interparticular agglomeration and surface oxidation. Aqueous conductive nano ink is prepared using the resulting Cu nanoparticles and conductive Cu layers are prepared via a wet coating process. The conductive Cu layers, metalized by annealing at 300 degrees C under vacuum atmosphere, exhibit excellent electrical resistivity, showing values as low as 12 microomega cm. The long-term dispersion stability for three months is monitored through an investigation on the rheological behavior of the conductive nano ink and the resistivity variation of the conductive Cu layer. The adhesion property of the conductive Cu layer is dramatically improved when using a primer-treated polyimide film, whereas the conductive Cu layer completely peels off on a pristine polyimide film. The epoxy-contained primer plays a critical role as an intermediary between the aqueous Cu nano ink and the polyimide film.

8.
ACS Appl Mater Interfaces ; 5(15): 6930-6, 2013 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-23790015

RESUMEN

Nanoparticle-based, solution-processed chalcopyrite photovoltaic devices have drawn tremendous attraction for the realization of low-cost, large-area solar cell applications. In particular, it has been recently demonstrated that the CuSe phase plays a critical role in allowing the formation of device-quality, nanoparticle-based chalcopyrite absorber layers. For further in-depth study, with the aim of understanding the thermal behavior of the CuSe phase that triggers the vigorous densification reaction, a requisite for high-performance chalcopyrite absorber layers, both multiphase (CuSe-phase including) and single-phase (CuSe-phase free) CISe nanoparticles are investigated from the viewpoint of compositional variation and crystalline structural evolution. In addition, with CuSe-phase including CISe particulate layers, the basic restrictions in thermal treatment necessary for activating effectively the CuSe-phase induced densification reaction are suggested, in conjunction with consideration on the thermal decomposition of organic additives that are inevitably incorporated in nanoparticle-based absorber layers.

9.
Langmuir ; 27(6): 3144-9, 2011 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-21338069

RESUMEN

With the aim of inkjet printing highly conductive and well-defined Cu features on plastic substrates, aqueous based Cu ink is prepared for the first time using water-soluble Cu nanoparticles with a very thin surface oxide layer. Owing to the specific properties, high surface tension and low boiling point, of water, the aqueous based Cu ink endows a variety of advantages over conventional Cu inks based on organic solvents in printing narrow conductive patterns without irregular morphologies. It is demonstrated how the design of aqueous based ink affects the basic properties of printed conductive features such as surface morphology, microstructure, conductivity, and line width. The long-term stability of aqueous based Cu ink against oxidation is analyzed through an X-ray photoelectron spectroscopy (XPS) based investigation on the evolution of the surface oxide layer in the aqueous based ink.

10.
J Nanosci Nanotechnol ; 7(11): 3780-3, 2007 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-18047057

RESUMEN

In this study, the CdSe nanocrystals were prepared in phenyl ether and octyl amine to investigate the variations of their size, bandgap energy, and photoluminescence with growth time and temperature. The sizes of the CdSe nanocrystals were measured using High Resolution Transmission Electron Microscopy (HRTEM), and found to be nearly monodisperse for relatively low growth temperature, 130 degrees C. Their optic properties were characterized by photoluminescence measurements, which showed that the colors of the nanocrystals could be controlled. The bandgap energies of the nanocrystals were calculated theoretically and found to be in accord with quantum confinement theory. This synthetic method requires only a cheap solvent and offers good reproducibility at a lower price.


Asunto(s)
Compuestos de Cadmio/química , Coloides/química , Cristalización/métodos , Nanotecnología/métodos , Puntos Cuánticos , Sulfuros/química , Frío , Luz , Ensayo de Materiales , Tamaño de la Partícula , Dispersión de Radiación
11.
J Am Chem Soc ; 127(34): 11906-7, 2005 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-16117506

RESUMEN

We report the real-time detection of protein using SWNT-FET-based biosensors comprising DNA aptamers as molecular recognition elements. Anti-thrombin aptamers that are highly specific to serine protein thrombin were immobilized on the sidewall of a SWNT-FET using CDI-Tween linking molecules. The binding of thrombin aptamers to SWNT-FETs causes a rightward shift of the threshold gate voltages, presumably due to the negatively charged backbone of the DNA aptamers. While the addition of thrombin solution causes an abrupt decrease in the conductance of the thrombin aptamer immobilized SWNT-FET, no noticeable change was observed with elastase.


Asunto(s)
Técnicas Biosensibles/métodos , Nanotecnología/métodos , Nanotubos de Carbono/química , Oligonucleótidos/química , Trombina/química , Secuencia de Bases , Sitios de Unión , ADN/química , Sensibilidad y Especificidad , Factores de Tiempo
12.
J Phys Chem B ; 109(1): 30-2, 2005 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-16850978

RESUMEN

First principles calculations are used to predict the stability and electronic structures of SnS(2) nanotubes. Optimization of several structures and their corresponding strain energies confirm the stability of SnS(2) nanotube structures. Band structure calculations show that SnS(2) nanotubes could have moderate band gaps regardless of their chirality. It suggests that SnS(2) nanotubes would be well-suited to use as semiconductor wires in nanoelectronic devices if they are synthesized. Adsorption of NH(3) onto SnS(2) is also investigated and discussed with regard to potential sensor application.


Asunto(s)
Nanotubos/química , Nanocables/química , Sulfuros/química , Compuestos de Estaño/química , Adsorción , Amoníaco/química , Modelos Moleculares , Tamaño de la Partícula , Semiconductores , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA