Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Small ; 18(42): e2204143, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36108133

RESUMEN

Magnetic field enhanced electrocatalysis has recently emerged as a promising strategy for the development of a viable and sustainable hydrogen economy via water oxidation. Generally, the effects of magnetic field enhanced electrocatalysis are complex including magnetothermal, magnetohydrodynamic and spin selectivity effects. However, the exploration of magnetic field effect on the structure regulation of electrocatalyst is still unclear whereas is also essential for underpinning the mechanism of magnetic enhancement on the electrocatalytic oxygen evolution reaction (OER) process. Here, it is identified that in a mixed NiFe2 O4 (NFO), a large magnetic field can force the Ni2+ cations to migrate from the octahedral (Oh ) sites to tetrahedral (Td ) sites. As a result, the magnetized NFO electrocatalyst (NFO-M) shows a two-fold higher current density than that of the pristine NFO in alkaline electrolytes. The OER enhancement of NFO is also observed at 1 T (NFO@1T) under an operando magnetic field. Our first-principles calculations further confirm the mechanism of magnetic field driven structure regulation and resultant OER enhancement. These findings provide a strategy of manipulating tetrahedral units of spinel oxides by a magnetic field on boosting OER performance.

3.
Nat Nanotechnol ; 17(4): 403-407, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35145285

RESUMEN

Single-atom catalysts have recently attracted considerable attention because of their highly efficient metal utilization and unique properties. Finding a green, facile method to synthesize them is key to their widespread commercialization. Here we show that single-atom catalysts (including iron, cobalt, nickel and copper) can be prepared via a top-down abrasion method, in which the bulk metal is directly atomized onto different supports, such as carbon frameworks, oxides and nitrides. The level of metal loading can be easily tuned by changing the abrasion rate. No synthetic chemicals, solvents or even water were used in the process and no by-products or waste were generated. The underlying reaction mechanism involves the mechanochemical force in situ generating defects on the supports, then trapping and stably sequestering atomized metals.

4.
Adv Mater ; 33(34): e2101382, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34278617

RESUMEN

The production of high-value chemicals by single-atom catalysis is an attractive proposition for industry owing to its remarkable selectivity. Successful demonstrations to date are mostly based on gas-phase reactions, and reports on liquid-phase catalysis are relatively sparse owing to the insufficient activation of reactants by single-atom catalysts (SACs), as well as, their instability in solution. Here, mechanically strong, hierarchically porous carbon plates are developed for the immobilization of SACs to enhance catalytic activity and stability. The carbon-based SACs exhibit excellent activity and selectivity (≈68%) for the synthesis of substituted quinolines by a three-component oxidative cyclization, affording a wide assortment of quinolines (23 examples) from anilines and acetophenones feedstock in an efficient, atom-economical manner. Particularly, a Cavosonstat derivative can be synthesized through a one-step, Fe1 -catalyzed cyclization instead of traditional Suzuki coupling. The strategy is also applicable to the deuteration of quinolines at the fourth position, which is challenging by conventional methods. The synthetic utility of the carbon-based SAC, together with its reusability and scalability, renders it promising for industrial scale catalysis.

5.
Angew Chem Int Ed Engl ; 59(47): 20873-20878, 2020 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-32749045

RESUMEN

3D well-crystallized metal-organic frameworks (MOFs), M-THBQ (M=Fe, Co, Mn, THBQ=tetrahydroxybenzoquinone), are synthesized and characterized. Their structures are determined as cubic cell in the group of Pm 3 ‾ from powder X-ray diffraction data, and their properties of electronic, magnetic and spectroscopic are also investigated. They are all semiconductors, and Fe-THBQ exhibits the air-stable n-type thermoelectric characteristic as its Seebeck coefficient reaches -130 µV K-1 , and the electrical conductivity is 2.7×10-4  S cm-1 at 300 K. Additional, M-THBQ are paramagnetic, and the value of Weiss constant of Fe-THBQ is -219.37 K, indicating the existence of robust intramolecular antiferromagnetic exchanges. Meanwhile, they display strong absorption bands in the range of 220 to 1000 nm, suggest M-THBQ could have the potential to become photoabsorbers, and Fe-THBQ exhibits a narrow band gap of 0.63 eV according to the ultraviolet absorption edge spectrum.

6.
Nat Commun ; 9(1): 5422, 2018 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-30575726

RESUMEN

Efficient, durable and inexpensive electrocatalysts that accelerate sluggish oxygen reduction reaction kinetics and achieve high-performance are highly desirable. Here we develop a strategy to fabricate a catalyst comprised of single iron atomic sites supported on a nitrogen, phosphorus and sulfur co-doped hollow carbon polyhedron from a metal-organic framework@polymer composite. The polymer-based coating facilitates the construction of a hollow structure via the Kirkendall effect and electronic modulation of an active metal center by long-range interaction with sulfur and phosphorus. Benefiting from structure functionalities and electronic control of a single-atom iron active center, the catalyst shows a remarkable performance with enhanced kinetics and activity for oxygen reduction in both alkaline and acid media. Moreover, the catalyst shows promise for substitution of expensive platinum to drive the cathodic oxygen reduction reaction in zinc-air batteries and hydrogen-air fuel cells.

7.
ACS Nano ; 10(12): 11532-11540, 2016 12 27.
Artículo en Inglés | MEDLINE | ID: mdl-27935672

RESUMEN

Innovation in transition-metal nitride (TMN) preparation is highly desired for realization of various functionalities. Herein, series of graphene-encapsulated TMNs (FexMn6-xCo4-N@C) with well-controlled morphology have been synthesized through topotactic transformation of metal-organic frameworks in an N2 atmosphere. The as-synthesized FexMn6-xCo4-N@C nanodices were systematically characterized and functionalized as Fenton-like catalysts for catalytic bisphenol A (BPA) oxidation by activation of peroxymonosulfate (PMS). The catalytic performance of FexMn6-xCo4-N@C was found to be largely enhanced with increasing Mn content. Theoretical calculations illustrated that the dramatically reduced adsorption energy and facilitated electron transfer for PMS activation catalyzed by Mn4N are the main factors for the excellent activity. Both sulfate and hydroxyl radicals were identified during the PMS activation, and the BPA degradation pathway mainly through hydroxylation, oxidation, and decarboxylation was investigated. Based on the systematic characterization of the catalyst before and after the reaction, the overall PMS activation mechanism over FexMn6-xCo4-N@C was proposed. This study details the insights into versatile TMNs for sustainable remediation by activation of PMS.

8.
Nanoscale ; 8(4): 2333-42, 2016 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-26752350

RESUMEN

The morphologically and compositionally controlled synthesis of coordination polymers and spinel oxides is highly desirable for realizing new advanced nanomaterial functionalities. Here we develop a novel and scalable strategy, containing a "copolymer-co-morphology" conception, to shape-controlled synthesis of various types of Prussian blue analogues (PBAs). Three series of PBAs MyFe1-y[Co(CN)6]0.67·nH2O (MyFe1-y-Co, M = Co, Mn and Zn) with well-controlled morphology have been successfully prepared through this strategy. Using MnyFe1-y-Co PBAs as the model, by increasing the relative content of Mn, flexible modulation of the morphology could be easily realized. In addition, a series of porous MnxFe1.8-xCo1.2O4 nano-dices with well-inherited morphologies and defined cation distribution could be obtained through a simple thermal treatment of the PBAs. All these results demonstrate the good universality of this novel strategy. When evaluated as an electrocatalyst, the octahedral-site Mn(III)/Mn(IV) content in MnxFe1.8-xCo1.2O4, mainly determined by sensitive (57)Fe Mössbauer in combination with X-ray photoelectron spectroscopic techniques, was discovered to be directly correlated with the oxygen reduction/evolution reaction (ORR/OER) activity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA