Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Animals (Basel) ; 14(1)2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-38200755

RESUMEN

Mycotoxins, such as Ochratoxin A (OTA), originating from fungi like Aspergillus and Penicillium, represent serious health hazards to poultry. The use of mycotoxin-adsorbing feed additives can reduce these risks. Opoka, a porous transitional rock, shows promise as one of these additives. This study is the first to examine the effect of Opoka administered with OTA on zootechnical parameters and the immune response of chickens. A 42-day investigation examined the impact of 1% of Opoka supplementation in feed on OTA-challenged broiler chickens. Seventy-two chickens were allocated into three groups of twenty-four individuals each: a control group, an OTA-exposed (2 mg/kg feed) group, and an OTA (2 mg/kg feed) plus 1% of Opoka group. Growth and blood parameters were monitored at predetermined intervals, and comprehensive biochemical, hematological, and cytometric analyses were conducted. The study showed that OTA exposure had a negative impact on chicken weight gain. However, adding Opoka to the diet improved weight gain, indicating its potential as a protective agent. Chickens fed with Opoka also had an increased white blood cell count, which suggests an improved immune response and elevated glucose and cholesterol concentrations. These findings indicate that Opoka may be useful in mitigating health complications caused by OTA exposure in broilers.

2.
Animals (Basel) ; 12(20)2022 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-36290118

RESUMEN

The human population is growing; food production is becoming insufficient, and the growing awareness of the negative impact of traditional animal husbandry on the environment means that the search for alternative methods of providing animal protein is continuously underway. The breeding of edible snails seems to be a promising option. The most popular species of edible snails in Europe include the brown garden snail Cornu aspersum (Müller, 1774) (previously divided into two subspecies: Cornu aspersum aspersum (Müller, 1774) and Cornu aspersum maxima (Taylor, 1883)), as well as the Roman Snail-Helix pomatia Linnaeus, 1758. These animals are highly productive, require relatively little space, are easy to breed and their maintenance does not require large financial outlays. This review focuses on the prospects of food snail farming in Europe. It discusses the living conditions, the nutritional value of the snails' meat, and the way of feeding the animals, paying particular attention to issues still not scientifically resolved, such as the need for micro and macro elements, as well as fat and carbohydrates.

3.
Animals (Basel) ; 11(7)2021 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-34203498

RESUMEN

The hygienic practices on farms should reduce pathogenic microorganisms while simultaneously not harming the animals themselves; they must also not degrade the products' quality. We assessed the effect of covering feed tables with paint containing silver nanoparticles (AgNPs) and the periodic spraying of effective microorganisms (EM) on production indicators and basic chemical composition, mineral content and fatty acid profiles in the bodies of Cornu aspersum aspersum snails. The animals were divided into four groups: (1) control, (2) with feed tables covered with AgNPs paint, (3) with EM spray applied and (4) with both factors-AgNP paint and EM spray. The highest increase in Ag, Zn, Fe and Ca retention, and the remodelling of the fatty acid profile in the carcasses of snails was found to be in the group of animals in contact with the feed tables covered with AgNP paint. In the group of animals exposed to the action of EM, an increased retention of Fe, Cu, P, Mg and Zn was found.

4.
PeerJ ; 9: e10760, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33552740

RESUMEN

BACKGROUND: Elaeagnus umbellata is a plant commonly used in traditional Asian medicine for its many health benefits and strong antioxidative activity. Its therapeutic potential is believed to be connected to its effect on fibroblasts. This study aimed to investigate E. umbellata methanol-acetone extract's (EUE) defense against hydrogen peroxide (H2O2)-induced fibroblast damage. METHODS: Because the main biologically active compounds of E. umbellata are water-insoluble, we evaluated the effects of methanol-acetone fruit extracts using liquid chromatography (for ascorbic acid and beta-carotene) and spectrophotometry (for lycopene and total phenolics). The extract's antioxidative activity was measured using DPPH radical inhibition, and EUE's effect on human fibroblasts was also evaluated. We assessed the metabolic activity and apoptosis of HFFF-2 fibroblasts exposed to EUE and/or H2O2using the XTT test and flow cytometry, respectively. Superoxide dismutase activity and reactive oxygen species (ROS) production were evaluated using colorimetric and fluorometric assays, respectively. We measured pro-inflammatory cytokine (MIF, fractalkine, MCP-4, BLC, GCP-2, NAP-2, Eotaxin-2, and Eotaxin-3) expression in HFFF-2 cells using immunocytochemistry. RESULT: The extract increased HFFF-2 cell proliferation and reduced cell death caused by H2O2-induced stress. H2O2-treated fibroblasts had greater ROS production than cells treated with both H2O2 and EUE. Additionally, the group treated with H2O2 alone showed higher pro-inflammatory cytokine (MIF, MCP-4, NAP-2, Eotaxin-2, and Eotaxin-3) expression. CONCLUSION: EUE protected human fibroblasts from H2O2-induced oxidative stress and reduced the fibroblast-mediated inflammatory response triggered by ROS.

5.
Animals (Basel) ; 10(12)2020 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-33271786

RESUMEN

The aim of this research was to evaluate the effect of Ag nanoparticles (nano-Ag) used in the paint covering feed tables or a multimicrobial preparation applied to feed tables on the microbiological composition of the feed table environment, the growth and mortality of snails, and selected parameters for assessing the quality of carcasses and snail shells. The research was carried out in a farm of Cornu aspersum (Müller) snails. In the control (K) group, paint without nano-Ag was used. In two other groups (N-Ag and N-Ag + effective microorganisms (EM)), the feed tables were covered with the same paint as in the control group but with the addition of 100 mg/L of nano-Ag it (N-Ag group). Additionally, multimicrobial preparation (EM Bokashi®) at a concentration of 10% was spread on the tables in the N-Ag + EM group. In the last group (EM), the feed tables were covered with paint without nano-Ag, and only multimicrobial preparation was applied at a concentration of 10%. During the tests, the body weight of snails was measured three times, and swab samples were taken from the feed tables for the examination of microbiological composition. At the end of the experiment, the snails were killed, and the weight of the carcass and the size of the shell were measured. The content of Ag and the degree of lipid oxidation (thiobarbituric acid reactive substances (TBARS)) in the carcasses were analyzed, and the content of Ca and the crushing strength of the shells were determined. In the N-Ag and N-Ag + EM groups, a significant reduction in the total number of bacteria, fecal streptococci, and Escherichia coli was found, while there was also a reduction in mold and fungi in the N-Ag + EM and EM groups. In the K and EM groups, the mortality of animals was higher than in the nano-Ag groups. In subsequent weight checks, the highest body weight was found in the EM group and the lowest in the N-Ag and N-Ag + EM groups. In addition, the carcass weight and shell size in the N-Ag group was significantly lower compared to the K and EM groups. In the N-Ag and N-Ag + EM groups, a higher Ag content in the carcasses and a greater degree of lipid peroxidation were found. The Ca content of the shells was the highest in the N-Ag group, and the hardness of shells was the highest in the N-Ag and N-Ag + EM groups.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA