Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sol Phys ; 299(8): 114, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39185303

RESUMEN

HXI on ASO-S and STIX onboard Solar Orbiter are the first simultaneously operating solar hard X-ray imaging spectrometers. ASO-S's low Earth orbit and Solar Orbiter's periodic displacement from the Sun-Earth line enables multi-viewpoint solar hard X-ray spectroscopic imaging analysis for the first time. Here, we demonstrate the potential of this new capability by reporting the first results of 3D triangulation of hard X-ray sources in the SOL2023-12-31T21:55 X5 flare. HXI and STIX observed the flare near the east limb with an observer separation angle of 18°. We triangulated the brightest regions within each source, which enabled us to characterise the large-scale hard X-ray geometry of the flare. The footpoints were found to be in the chromosphere within uncertainty, as expected, while the thermal looptop source was centred at an altitude of 15.1 ± 1 Mm. Given the footpoint separation, this implies a more elongated magnetic-loop structure than predicted by a semi-circular model. These results show the strong diagnostic power of joint HXI and STIX observations for understanding the 3D geometry of solar flares. We conclude by discussing the next steps required to fully exploit their potential.

2.
Sol Phys ; 297(7): 93, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35891628

RESUMEN

The Spectrometer/Telescope for Imaging X-rays (STIX) is one of six remote sensing instruments on-board Solar Orbiter. The telescope applies an indirect imaging technique that uses the measurement of 30 visibilities, i.e., angular Fourier components of the solar flare X-ray source. Hence, the imaging problem for STIX consists of the Fourier inversion of the data measured by the instrument. In this work, we show that the visibility amplitude and phase calibration of 24 out of 30 STIX sub-collimators has reached a satisfactory level for scientific data exploitation and that a set of imaging methods is able to provide the first hard X-ray images of solar flares from Solar Orbiter. Four visibility-based image reconstruction methods and one count-based are applied to calibrated STIX observations of six events with GOES class between C4 and M4 that occurred in May 2021. The resulting reconstructions are compared to those provided by an optimization algorithm used for fitting the amplitudes of STIX visibilities. We show that the five imaging methods produce results morphologically consistent with the ones provided by the Atmospheric Imaging Assembly on board the Solar Dynamic Observatory (SDO/AIA) in UV wavelengths. The χ 2 values and the parameters of the reconstructed sources are comparable between methods, thus confirming their robustness.

3.
Astrophys J ; 913(1)2021 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-35034968

RESUMEN

We study the nature of energy release and transfer for two sub-A class solar microflares observed during the second Focusing Optics X-ray Solar Imager (FOXSI-2) sounding rocket flight on 2014 December 11. FOXSI is the first solar-dedicated instrument to utilize focusing optics to image the Sun in the hard X-ray (HXR) regime, sensitive to energies of 4-20 keV. Through spectral analysis of the microflares using an optically thin isothermal plasma model, we find evidence for plasma heated to ~10 MK and emission measures down to ~1044 cm-3. Though nonthermal emission was not detected for the FOXSI-2 microflares, a study of the parameter space for possible hidden nonthermal components shows that there could be enough energy in nonthermal electrons to account for the thermal energy in microflare 1, indicating that this flare is plausibly consistent with the standard thick-target model. With a solar-optimized design and improvements in HXR focusing optics, FOXSI-2 offers approximately five times greater sensitivity at 10 keV than the Nuclear Spectroscopic Telescope Array for typical microflare observations and allows for the first direct imaging spectroscopy of solar HXRs with an angular resolution at scales relevant for microflares. Harnessing these improved capabilities to study small-scale events, we find evidence for spatial and temporal complexity during a sub-A class flare. This analysis, combined with contemporaneous observations by the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory, indicates that these microflares are more similar to large flares in their evolution than to the single burst of energy expected for a nanoflare.

4.
Angew Chem Int Ed Engl ; 55(52): 16096-16100, 2016 12 23.
Artículo en Inglés | MEDLINE | ID: mdl-27791303

RESUMEN

The rational design of a flexible molecular box, oAzoBox4+ , incoporating both photochromic and supramolecular recognition motifs is described. We exploit the E↔Z photoisomerization properties of azobenzenes to alter the shape of the cavity of the macrocycle upon absorption of light. Imidazolium motifs are used as hydrogen-bonding donor components, allowing for sequestration of small molecule guests in acetonitrile. Upon E→Z photoisomerization of oAzoBox4+ the guest is expelled from the macrocyclic cavity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA