Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
An Acad Bras Cienc ; 90(4): 3389-3401, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30365706

RESUMEN

Taper functions and volume equations are essential for estimation of the individual volume, which have consolidated theory. On the other hand, mathematical innovation is dynamic, and may improve the forestry modeling. The objective was analyzing the accuracy of machine learning (ML) techniques in relation to a volumetric model and a taper function for acácia negra. We used cubing data, and fit equations with Schumacher and Hall volumetric model and with Hradetzky taper function, compared to the algorithms: k nearest neighbor (k-NN), Random Forest (RF) and Artificial Neural Networks (ANN) for estimation of total volume and diameter to the relative height. Models were ranked according to error statistics, as well as their dispersion was verified. Schumacher and Hall model and ANN showed the best results for volume estimation as function of dap and height. Machine learning methods were more accurate than the Hradetzky polynomial for tree form estimations. ML models have proven to be appropriate as an alternative to traditional modeling applications in forestry measurement, however, its application must be careful because fit-based overtraining is likely.


Asunto(s)
Acacia/crecimiento & desarrollo , Aprendizaje Automático , Redes Neurales de la Computación , Tallos de la Planta/crecimiento & desarrollo , Algoritmos , Brasil
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA