Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nano Lett ; 24(22): 6658-6664, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38770882

RESUMEN

Synthetic quantum systems provide a pathway for exploring the physics of complex quantum matter in a programmable fashion. This approach becomes particularly advantageous when it comes to systems that are thermodynamically unfavorable. By sculpting the potential landscape of Cu(111) surfaces with carbon monoxide quantum corrals in a cryogenic scanning tunneling microscope, we created analogue simulators of planar organic molecules, including antiaromatic and non-Kekulé species that are generally reactive or unstable. Spectroscopic imaging of such synthetic molecules reveals close replications of molecular orbitals obtained from ab initio calculations of the organic molecules. We further illustrate the quantitative nature of such analogue simulators by faithful extraction of bond orders and global aromaticity indices, which are otherwise technically daunting using real molecules. Our approach therefore sets the stage for new research frontiers pertaining to the quantum physics and chemistry of designer nanostructures.

2.
ACS Nano ; 17(20): 20502-20511, 2023 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-37815981

RESUMEN

Lead-based, mixed-halide perovskites such as methylammonium lead iodide-bromide [MAPb(I1-xBrx)3] undergo anion photosegregation under illumination. This is observed as low-band-gap photoluminescence from photogenerated iodine-rich domains due to favorable band offsets that induce carrier funneling into them. Unfortunately, theoretical rationalizations of mixed-halide photosegregation are complicated by biases inherent in photoluminescence-based observations. Recent compositionally weighted X-ray diffraction (XRD) measurements now reveal broad distributions of photosegregated stoichiometries not captured by existing photosegregation models. To better bridge experiment and theory, we perform kinetic Monte Carlo (KMC) simulations of photosegregation within the context of a band-gap-based thermodynamic model, which has previously accounted for numerous experimental observations. Our KMC simulations are modified to consider high carrier density Fermi-Dirac statistics that result from carrier funneling and accumulation within photosegregated I-rich domains. Obtained KMC results reproduce broad terminal halide (xterminal) distributions seen experimentally and illustrate how they are characterized by a central, heavily I-enriched stoichiometry. I-rich domain "drifting" during photosegregation rationalizes the long photosegregation time scales seen experimentally with drifting simultaneously, producing a wake of variable stoichiometry I-rich inclusions that form the lion's share of stoichiometric heterogeneities seen in compositionally weighted XRD measurements. These simulations and accompanying rationalizations further reveal a general criterion for realizing favorable free energies to induce demixing. Central to the criterion is the statistical occupation of low gap inclusions in the parent alloy by excitations. The resulting model thus provides a general framework for conceptualizing mixed-halide perovskite light and temperature sensitivities mediated by photocarriers.

3.
ACS Nano ; 16(12): 21636-21644, 2022 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-36468911

RESUMEN

Although broad consensus exists that photoirradiation of mixed-halide lead perovskites leads to anion segregation, no model today fully rationalizes all aspects of this near ubiquitous phenomenon. Here, we quantitatively compare experimental, CsPb(I0.5Br0.5)3 nanocrystal (NC) terminal anion photosegregation stoichiometries and excitation intensity thresholds to a band gap-based, thermodynamic model of mixed-halide perovskite photosegregation. Mixed-halide NCs offer strict tests of theory given physical sizes, which dictate local photogenerated carrier densities. We observe that mixed-anion perovskite NCs exhibit significant robustness to photosegregation, with photosegregation propensity decreasing with decreasing NC size. Observed size- and excitation intensity-dependent photosegregation data agree with model predicted size- and excitation intensity-dependent terminal halide stoichiometries. Established correspondence between experiment and theory, in turn, suggests that mixed-halide perovskite photostabilities can be predicted a priori using local gradients of (empirical) Vegard's law expressions of composition-dependent band gaps.

4.
ACS Appl Mater Interfaces ; 14(7): 9352-9362, 2022 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-35142505

RESUMEN

Herein, we subject formamidinium lead iodide films to oxygen-containing gases (flowing O2 or free diffusion of lab atmosphere), inert gases (flowing He, Ar, or N2), and vacuum. Our films are irradiated by Cu Kα X-rays and held at 75 °C while X-ray diffraction is recorded. Under all gas conditions, we observe a reproducible 1.1 ± 0.5 Å3 perovskite lattice contraction from an initial unit cell volume of 256.5 ± 0.8 Å3 concurrent with continuous perovskite loss and lead iodide growth. Oxygen-containing gases increase the reaction rates without materially altering perovskite structural changes. Under the same temperature and irradiation conditions in vacuo, a self-healing reaction is observed, exhibited by a reproducible (0.9 ± 0.3 Å3) lattice expansion and stabilization of the perovskite. Interactions between the perovskite, defects, and minority phases are simulated by generalized gradient approximation Perdew-Burke-Ernzerhof (GGA-PBE) density functional theory. Lattice contraction indicates an increase in the concentration of Schottky defects─pairs of formamidinium and iodine vacancies. Under irradiation in every atmospheric condition, a solid solution of Schottky defects with a concentration of several percent diffuses and precipitates forming lead iodide and consuming the defects. In the presence of ionized gases, this framework is modified to include the continual loss of formamidinium and iodine ions from the perovskite forming Schottky defects.

5.
Nano Lett ; 17(6): 3902-3906, 2017 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-28510441

RESUMEN

We report for the first time the synthesis of large, free-standing, Mo2O2(µ-S)2(Et2dtc)2 (MoDTC) nanosheets (NSs), which exhibit an electron-beam induced crystalline-to-amorphous phase transition. Both electron beam ionization and femtosecond (fs) optical excitation induce the phase transition, which is size-, morphology-, and composition-preserving. Resulting NSs are the largest, free-standing regularly shaped two-dimensional amorphous nanostructures made to date. More importantly, amorphization is accompanied by dramatic changes to the NS electrical and optical response wherein resulting amorphous species exhibit room-temperature conductivities 5 orders of magnitude larger than those of their crystalline counterparts. This enhancement likely stems from the amorphization-induced formation of sulfur vacancy-related defects and is supported by temperature-dependent transport measurements, which reveal efficient variable range hopping. MoDTC NSs represent one instance of a broader class of transition metal carbamates likely having applications because of their intriguing electrical properties as well as demonstrated ability to toggle metal oxidation states.

6.
Nat Commun ; 8: 14521, 2017 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-28223699

RESUMEN

Fluorescence intermittency or blinking is observed in nearly all nanoscale fluorophores. It is characterized by universal power-law distributions in on- and off-times as well as 1/f behaviour in corresponding emission power spectral densities. Blinking, previously seen in confined zero- and one-dimensional systems has recently been documented in two-dimensional reduced graphene oxide. Here we show that unexpected blinking during graphene oxide-to-reduced graphene oxide photoreduction is attributed, in large part, to the redistribution of carbon sp2 domains. This reclustering generates fluctuations in the number/size of emissive graphenic nanoclusters wherein multiscale modelling captures essential experimental aspects of reduced graphene oxide's absorption/emission trajectories, while simultaneously connecting them to the underlying photochemistry responsible for graphene oxide's reduction. These simulations thus establish causality between currently unexplained, long timescale emission intermittency in a quantum mechanical fluorophore and identifiable chemical reactions that ultimately lead to switching between on and off states.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA