Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
2.
Nat Commun ; 15(1): 5237, 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38898005

RESUMEN

Ovarian cancer often develops resistance to conventional therapies, hampering their effectiveness. Here, using ex vivo paired ovarian cancer ascites obtained before and after chemotherapy and in vitro therapy-induced secretomes, we show that molecules secreted by ovarian cancer cells upon therapy promote cisplatin resistance and enhance DNA damage repair in recipient cancer cells. Even a short-term incubation of chemonaive ovarian cancer cells with therapy-induced secretomes induces changes resembling those that are observed in chemoresistant patient-derived tumor cells after long-term therapy. Using integrative omics techniques, we find that both ex vivo and in vitro therapy-induced secretomes are enriched with spliceosomal components, which relocalize from the nucleus to the cytoplasm and subsequently into the extracellular vesicles upon treatment. We demonstrate that these molecules substantially contribute to the phenotypic effects of therapy-induced secretomes. Thus, SNU13 and SYNCRIP spliceosomal proteins promote therapy resistance, while the exogenous U12 and U6atac snRNAs stimulate tumor growth. These findings demonstrate the significance of spliceosomal network perturbation during therapy and further highlight that extracellular signaling might be a key factor contributing to the emergence of ovarian cancer therapy resistance.


Asunto(s)
Cisplatino , Resistencia a Antineoplásicos , Neoplasias Ováricas , Empalmosomas , Femenino , Humanos , Neoplasias Ováricas/metabolismo , Neoplasias Ováricas/patología , Neoplasias Ováricas/genética , Neoplasias Ováricas/tratamiento farmacológico , Empalmosomas/metabolismo , Cisplatino/farmacología , Línea Celular Tumoral , Animales , Ratones , Vesículas Extracelulares/metabolismo , Supervivencia Celular/efectos de los fármacos , Antineoplásicos/farmacología , ARN Nuclear Pequeño/metabolismo , ARN Nuclear Pequeño/genética , Reparación del ADN
3.
Int J Mol Sci ; 25(12)2024 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-38928339

RESUMEN

Receptors of cytokines are major regulators of the immune response. In this work, we have discovered two new ligands that can activate the TNFR1 (tumor necrosis factor receptor 1) receptor. Earlier, we found that the peptide of the Tag (PGLYRP1) protein designated 17.1 can interact with the TNFR1 receptor. Here, we have found that the Mts1 (S100A4) protein interacts with this peptide with a high affinity (Kd = 1.28 × 10-8 M), and that this complex is cytotoxic to cancer cells that have the TNFR1 receptor on their surface. This complex induces both apoptosis and necroptosis in cancer cells with the involvement of mitochondria and lysosomes in cell death signal transduction. Moreover, we have succeeded in locating the Mts1 fragment that is responsible for protein-peptide interaction, which highly specifically interacts with the Tag7 protein (Kd = 2.96 nM). The isolated Mts1 peptide M7 also forms a complex with 17.1, and this peptide-peptide complex also induces the TNFR1 receptor-dependent cell death. Molecular docking and molecular dynamics experiments show the amino acids involved in peptide binding and that may be used for peptidomimetics' development. Thus, two new cytotoxic complexes were created that were able to induce the death of tumor cells via the TNFR1 receptor. These results may be used in therapy for both cancer and autoimmune diseases.


Asunto(s)
Apoptosis , Receptores Tipo I de Factores de Necrosis Tumoral , Humanos , Receptores Tipo I de Factores de Necrosis Tumoral/metabolismo , Receptores Tipo I de Factores de Necrosis Tumoral/química , Apoptosis/efectos de los fármacos , Unión Proteica , Simulación del Acoplamiento Molecular , Línea Celular Tumoral , Péptidos/química , Péptidos/farmacología , Péptidos/metabolismo , Simulación de Dinámica Molecular , Transducción de Señal/efectos de los fármacos , Necroptosis/efectos de los fármacos , Oligopéptidos/química , Oligopéptidos/farmacología , Oligopéptidos/metabolismo , Citocinas
4.
Antibiotics (Basel) ; 12(12)2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-38136753

RESUMEN

The global spread of antibiotic resistance marks the end of the era of conventional antibiotics. Mankind desires new molecular tools to fight pathogenic bacteria. In this regard, the development of new antimicrobials based on antimicrobial peptides (AMPs) is again of particular interest. AMPs have various mechanisms of action on bacterial cells. Moreover, AMPs have been reported to be efficient in preclinical studies, demonstrating a low level of resistance formation. Thanatin is a small, beta-hairpin antimicrobial peptide with a bacterial-specific mode of action, predetermining its low cytotoxicity toward eukaryotic cells. This makes thanatin an exceptional candidate for new antibiotic development. Here, a microorganism was bioengineered to produce an antimicrobial agent, providing novel opportunities in antibiotic research through the directed creation of biocontrol agents. The constitutive heterologous production of recombinant thanatin (rThan) in the yeast Pichia pastoris endows the latter with antibacterial properties. Optimized expression and purification conditions enable a high production level, yielding up to 20 mg/L of rThan from the culture medium. rThan shows a wide spectrum of activity against pathogenic bacteria, similarly to its chemically synthesized analogue. The designed approach provides new avenues for AMP engineering and creating live biocontrol agents to fight antibiotic resistance.

5.
Microorganisms ; 11(9)2023 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-37764026

RESUMEN

In the current study, extensive Orbitrap mass spectrometry analysis was conducted for skin strain Micrococcus luteus C01 planktonic cultures and biofilms after 24 h and 72 h of incubation either in the presence of epinephrine or without any implementations. The investigation revealed the complex and conditionally extensive effect of epinephrine at concentrations closer to normal blood plasma concentrations on both planktonic cultures and biofilms of skin strain M. luteus C01. The concentrations of hundreds of proteins changed during the shift from planktonic growth mode to biofilm and hundreds of proteins were downregulated or upregulated in the presence of epinephrine. Ribosomal, TCA, and cell division proteins appear to be the most altered in their amounts in the presence of the hormone. Potentially, the regulatory mechanism of this process is connected with c-di-GMP and histidine kinases, which were affected by epinephrine in different samples. The phenomenon of epinephrine-based biofilm regulation in M. luteus C01 has wide implications for microbial endocrinology and other research areas.

6.
Foods ; 12(18)2023 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-37761064

RESUMEN

Bifidobacterium is a predominant and important genus in the bacterial population of the human gut microbiota. Despite the increasing number of studies on the beneficial functionality of bifidobacteria for human health, knowledge about their antioxidant potential is still insufficient. Several in vivo and in vitro studies of Bifidobacterium strains and their cellular components have shown good antioxidant capacity that provided a certain protection of their own and the host's cells. Our work presents the data of transcriptomic, proteomic, and metabolomic analyses of the growing and stationary culture of the probiotic strain B. longum subsp. longum GT15 after exposure to hydrogen peroxide for 2 h and oxygen for 2 and 4 h. The results of the analysis of the sequenced genome of B. longum GT15 showed the presence of 16 gene-encoding proteins with known antioxidant functions. The results of the full transcriptomic analysis demonstrated a more than two-fold increase of levels of transcripts for eleven genes, encoding proteins with antioxidant functions. Proteomic data analysis showed an increased level of more than two times for glutaredoxin and thioredoxin after the exposure to oxygen, which indicates that the thioredoxin-dependent antioxidant system may be the major redox homeostasis system in B. longum bacteria. We also found that the levels of proteins presumably involved in global stress, amino acid metabolism, nucleotide and carbohydrate metabolism, and transport had significantly increased in response to oxidative stress. The metabolic fingerprint analysis also showed good discrimination between cells responding to oxidative stress and the untreated controls. Our results provide a greater understanding of the mechanism of oxidative stress response in B. longum and the factors that contribute to its survival in functional food products.

7.
Front Endocrinol (Lausanne) ; 14: 1203437, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37465121

RESUMEN

Introduction: Until recently no major epidemiological research of primary hyperparathyroidism (PHPT) has been conducted in the Russian Federation, this led to the creation of the Russian online registry. The objective of this study is to estimate the clinical and biochemical profile, classical and non-classical complications, surgical intervention and medical therapy of the patients with different forms of PHPT in the Russian Federation. Materials and methods: The cross-sectional, observational, continuous study was conducted at the Endocrinology Research Centre (Moscow). The present study explored retrospective data from 6003 patients submitted to the Registry between 12.12.2016 and 25.10.2022 from 81 regions of the Russian Federation (http://pgpt.clin-reg.ru/). Results: The median age was 59 [60; 66] years with a female:male ratio of 11.7:1. Symptomatic PHPT was observed in 74.3% while asymptomatic form - only in 25.7% of cases. Bone pathology was the predominant clinical manifestation in 62.5% of cases (n=2293), mostly in combination with visceral complications 45.7% (n=1676). The majority of patients (63.3%) had combined visceral disorders including kidney damage in 51.8% and gastroduodenal erosions/ulcers in 32.3% of patients. Symptomatic patients were older (60 [53; 67] vs. 54 [45; 62] years, p<0.001) and had more severe biochemical alterations of calcium-phosphorus metabolism. Cardiovascular disease (СVD) was recorded in 48% of patients, among them the most frequent was arterial hypertension (up to 93.9%). A genetic test was conducted in 183 cases (suspicious for hereditary PHPT) revealing the mutations in MEN1, CDC73, RET genes in 107, 6 and 2 cases, respectively. Surgery was performed in 53.4% of patients with remission achievement in 87%, the relapse/persistence were recorded in 13% of cases. Histological examination revealed carcinoma in 4%, atypical adenoma in 2%, adenoma in 84% and hyperplasia in 11% of cases. Drug therapy was prescribed in 54.0% of cases, most often cholecalciferol. Conclusion: The detection rate of PHPT has increased in the Russian Federation in recent years. This increase is associated with the start of online registration. However, the majority of patients remain symptomatic with significant alterations of phosphorus-calcium metabolism that indicates delayed diagnosis and requires further modifications of medical care.


Asunto(s)
Adenoma , Hiperparatiroidismo Primario , Humanos , Masculino , Femenino , Persona de Mediana Edad , Calcio , Estudios Retrospectivos , Hiperparatiroidismo Primario/complicaciones , Hiperparatiroidismo Primario/epidemiología , Hiperparatiroidismo Primario/genética , Estudios Transversales , Sistema de Registros , Calcio de la Dieta , Adenoma/complicaciones , Fósforo
8.
Front Microbiol ; 14: 1108245, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37520367

RESUMEN

Haloalkaliphilic microorganisms are double extremophiles functioning optimally at high salinity and pH. Their typical habitats are soda lakes, geologically ancient yet widespread ecosystems supposed to harbor relict microbial communities. We compared metabolic features and their determinants in two strains of the natronophilic species Dethiobacter alkaliphilus, the only cultured representative of the class "Dethiobacteria" (Bacillota). The strains of D. alkaliphilus were previously isolated from geographically remote Mongolian and Kenyan soda lakes. The type strain AHT1T was described as a facultative chemolithoautotrophic sulfidogen reducing or disproportionating sulfur or thiosulfate, while strain Z-1002 was isolated as a chemolithoautotrophic iron reducer. Here, we uncovered the iron reducing ability of strain AHT1T and the ability of strain Z-1002 for thiosulfate reduction and anaerobic Fe(II) oxidation. Key catabolic processes sustaining the growth of both D. alkaliphilus strains appeared to fit the geochemical settings of two contrasting natural alkaline environments, sulfur-enriched soda lakes and iron-enriched serpentinites. This hypothesis was supported by a meta-analysis of Dethiobacterial genomes and by the enrichment of a novel phylotype from a subsurface alkaline aquifer under Fe(III)-reducing conditions. Genome analysis revealed multiheme c-type cytochromes to be the most probable determinants of iron and sulfur redox transformations in D. alkaliphilus. Phylogeny reconstruction showed that all the respiratory processes in this organism are likely provided by evolutionarily related early forms of unconventional octaheme tetrathionate and sulfite reductases and their structural analogs, OmhA/OcwA Fe(III)-reductases. Several phylogenetically related determinants of anaerobic Fe(II) oxidation were identified in the Z-1002 genome, and the oxidation process was experimentally demonstrated. Proteomic profiling revealed two distinct sets of multiheme cytochromes upregulated in iron(III)- or thiosulfate-respiring cells and the cytochromes peculiar for Fe(II) oxidizing cells. We suggest that maintaining high variation in multiheme cytochromes is an effective adaptive strategy to occupy geochemically contrasting alkaline environments. We propose that sulfur-enriched soda lakes could be secondary habitats for D. alkaliphilus compared to Fe-rich serpentinites, and that the ongoing evolution of Dethiobacterales could retrace the evolutionary path that may have occurred in prokaryotes at a turning point in the biosphere's history, when the intensification of the sulfur cycle outweighed the global significance of the iron cycle.

9.
Biomedicines ; 11(4)2023 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-37189733

RESUMEN

Protozoal infections are a world-wide problem. The toxicity and somewhat low effectiveness of the existing drugs require the search for new ways of protozoa suppression. Snake venom contains structurally diverse components manifesting antiprotozoal activity; for example, those in cobra venom are cytotoxins. In this work, we aimed to characterize a novel antiprotozoal component(s) in the Bungarus multicinctus krait venom using the ciliate Tetrahymena pyriformis as a model organism. To determine the toxicity of the substances under study, surviving ciliates were registered automatically by an original BioLaT-3.2 instrument. The krait venom was separated by three-step liquid chromatography and the toxicity of the obtained fractions against T. pyriformis was analyzed. As a result, 21 kDa protein toxic to Tetrahymena was isolated and its amino acid sequence was determined by MALDI TOF MS and high-resolution mass spectrometry. It was found that antiprotozoal activity was manifested by ß-bungarotoxin (ß-Bgt) differing from the known toxins by two amino acid residues. Inactivation of ß-Bgt phospholipolytic activity with p-bromophenacyl bromide did not change its antiprotozoal activity. Thus, this is the first demonstration of the antiprotozoal activity of ß-Bgt, which is shown to be independent of its phospholipolytic activity.

10.
Nucleic Acids Res ; 51(12): 6087-6100, 2023 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-37140047

RESUMEN

The Polycomb group (PcG) proteins are fundamental epigenetic regulators that control the repressive state of target genes in multicellular organisms. One of the open questions is defining the mechanisms of PcG recruitment to chromatin. In Drosophila, the crucial role in PcG recruitment is thought to belong to DNA-binding proteins associated with Polycomb response elements (PREs). However, current data suggests that not all PRE-binding factors have been identified. Here, we report the identification of the transcription factor Crooked legs (Crol) as a novel PcG recruiter. Crol is a C2H2-type Zinc Finger protein that directly binds to poly(G)-rich DNA sequences. Mutation of Crol binding sites as well as crol CRISPR/Cas9 knockout diminish the repressive activity of PREs in transgenes. Like other PRE-DNA binding proteins, Crol co-localizes with PcG proteins inside and outside of H3K27me3 domains. Crol knockout impairs the recruitment of the PRC1 subunit Polyhomeotic and the PRE-binding protein Combgap at a subset of sites. The decreased binding of PcG proteins is accompanied by dysregulated transcription of target genes. Overall, our study identified Crol as a new important player in PcG recruitment and epigenetic regulation.


Asunto(s)
Proteínas de Drosophila , Drosophila , Factores de Transcripción , Animales , Cromatina/genética , Cromatina/metabolismo , Proteínas de Unión al ADN/genética , Drosophila/genética , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Epigénesis Genética , Regulación del Desarrollo de la Expresión Génica , Proteínas del Grupo Polycomb/genética , Proteínas del Grupo Polycomb/metabolismo , Factores de Transcripción/metabolismo
11.
Biochemistry (Mosc) ; 88(1): 152-161, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37068877

RESUMEN

Inorganic polyphosphates (polyP), according to literature data, are involved in the regulatory processes of molecular complex of the Saccharomyces cerevisiae cell wall (CW). The aim of the work was to reveal relationship between polyP, acid phosphatase Pho3p, and the major CW protein, glucanosyltransglycosylase Bgl2p, which is the main glucan-remodelling enzyme with amyloid properties. It has been shown that the yeast cells with deletion of the PHO3 gene contain more high molecular alkali-soluble polyP and are also more resistant to exposure to alkali and manganese ions compared to the wild type strain. This suggests that Pho3p is responsible for hydrolysis of the high molecular polyP on the surface of yeast cells, and these polyP belong to the stress resistance factors. The S. cerevisiae strain with deletion of the BGL2 gene is similar to the Δpho3 strain both in the level of high molecular alkali-soluble polyP and in the increased resistance to alkali and manganese. Comparative analysis of the CW proteins demonstrated correlation between the extractability of the acid phosphatase and Bgl2p, and also revealed a change in the mode of Bgl2p attachment to the CW of the strain lacking Pho3p. It has been suggested that Bgl2p and Pho3p are able to form a metabolon or its parts that connects biogenesis of the main structural polymer of the CW, glucan, and catabolism of an important regulatory polymer, polyphosphates.


Asunto(s)
Fosfatasa Ácida , Glucano Endo-1,3-beta-D-Glucosidasa , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Fosfatasa Ácida/genética , Fosfatasa Ácida/metabolismo , Pared Celular/metabolismo , Glucanos/metabolismo , Manganeso/metabolismo , Polímeros , Polifosfatos/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Glucano Endo-1,3-beta-D-Glucosidasa/genética , Glucano Endo-1,3-beta-D-Glucosidasa/metabolismo
12.
Cells ; 12(6)2023 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-36980286

RESUMEN

Myelin basic protein (MBP) is one of the key structural elements of the myelin sheath and has autoantigenic properties in multiple sclerosis (MS). Its intracellular interaction network is still partially deconvoluted due to the unfolded structure, abnormally basic charge, and specific cellular localization. Here we used the fusion protein of MBP with TurboID, an engineered biotin ligase that uses ATP to convert biotin to reactive biotin-AMP that covalently attaches to nearby proteins, to determine MBP interactome. Despite evident benefits, the proximity labeling proteomics technique generates high background noise, especially in the case of proteins tending to semi-specific interactions. In order to recognize unique MBP partners, we additionally mapped protein interaction networks for deaminated MBP variant and cyclin-dependent kinase inhibitor 1 (p21), mimicking MBP in terms of natively unfolded state, size and basic amino acid clusters. We found that in the plasma membrane region, MBP is colocalized with adhesion proteins occludin and myelin protein zero-like protein 1, solute carrier family transporters ZIP6 and SNAT1, Eph receptors ligand Ephrin-B1, and structural components of the vesicle transport machinery-synaptosomal-associated protein 23 (SNAP23), vesicle-associated membrane protein 3 (VAMP3), protein transport protein hSec23B and cytoplasmic dynein 1 heavy chain 1. We also detected that MBP potentially interacts with proteins involved in Fe2+ and lipid metabolism, namely, ganglioside GM2 activator protein, long-chain-fatty-acid-CoA ligase 4 (ACSL4), NADH-cytochrome b5 reductase 1 (CYB5R1) and metalloreductase STEAP3. Assuming the emerging role of ferroptosis and vesicle cargo docking in the development of autoimmune neurodegeneration, MBP may recruit and regulate the activity of these processes, thus, having a more inclusive role in the integrity of the myelin sheath.


Asunto(s)
Biotina , Proteína Básica de Mielina , Proteómica , Proteína Básica de Mielina/metabolismo , Vaina de Mielina/metabolismo , Proteínas , Proteómica/métodos , Mapas de Interacción de Proteínas
13.
Protein J ; 42(4): 408-420, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37002449

RESUMEN

Xanthorhodopsin (XR) from Salinibacter ruber is a light-driven proton pump containing retinal and a light-harvesting carotenoid antenna salinixanthin. Previous structure-functional studies of XR were conducted using a protein isolated from the native host only due to the absence of heterologous expression in Escherichia coli. In this paper, we describe cell-free synthesis and incorporation in lipid-protein nanodiscs of the recombinant XR that demonstrated its principal compatibility with E. coli biosynthetic machinery. To produce XR in E. coli, three C-terminal deletion variants of this protein were constructed. In contrast to the full-length XR, their expression resulted in efficient synthesis in E. coli cells. However, cells producing recombinant XR variants bound retinal only upon growth in minimal medium, not in the rich one. The XR3 variant with deletion of ten C-terminal amino acid residues was obtained and characterized. Its absorption spectrum and photocycle kinetics were close to those reported for XR isolated from S. ruber membranes and bleached from salinixanthin. We have also constructed the first mutants of XR, H62M and D96N, and examined their properties.


Asunto(s)
Carotenoides , Escherichia coli , Escherichia coli/genética , Escherichia coli/metabolismo , Carotenoides/química , Carotenoides/metabolismo , Glicósidos/química , Glicósidos/metabolismo , Proteínas Bacterianas/química
14.
Int J Mol Sci ; 24(3)2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-36768413

RESUMEN

Proteasomes exist in mammalian cells in multiple combinatorial variants due to the diverse regulatory particles and exchange of catalytic subunits. Here, using biotin carboxyl carrier domain of transcarboxylase from Propionibacterium shermanii fused with different proteasome subunits of catalytic and regulatory particles, we report comprehensive characterization of highly homogenous one-step purified human constitutive and immune 20S and 26S/30S proteasomes. Hydrolysis of a multiple sclerosis (MS) autoantigen, myelin basic protein (MBP), by engineered human proteasomes with different catalytic phenotypes, revealed that peptides which may be directly loaded on the HLA class I molecules are produced mainly by immunoproteasomes. We detected at least five MBP immunodominant core regions, namely, LPRHRDTGIL, SLPQKSHGR, QDENPVVHFF, KGRGLSLSRF and GYGGRASDY. All peptides, except QDENPVVHFF, which originates from the encephalitogenic MBP part, were associated with HLA I alleles considered to increase MS risk. Prediction of the affinity of HLA class I to this peptide demonstrated that MS-protective HLA-A*44 and -B*35 molecules are high-affinity binders, whereas MS-associated HLA-A*23, -A*24, -A*26 and -B*51 molecules tend to have moderate to low affinity. The HLA-A*44 molecules may bind QDENPVVHFF and its deamidated form in several registers with unprecedently high affinity, probably linking its distinct protective phenotype with thymic depletion of the repertoire of autoreactive cytotoxic T cells or induction of CD8+ regulatory T cells, specific to the encephalitogenic MBP peptide.


Asunto(s)
Esclerosis Múltiple , Proteína Básica de Mielina , Animales , Humanos , Proteína Básica de Mielina/metabolismo , Complejo de la Endopetidasa Proteasomal , Ligandos , Fragmentos de Péptidos , Péptidos/química , Esclerosis Múltiple/genética , Epítopos Inmunodominantes , Antígenos HLA-A , Mamíferos/metabolismo
15.
Biophys Chem ; 292: 106936, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36436358

RESUMEN

The work aimed to investigate how the phosphorylation of the myosin essential light chain of fast skeletal myosin (LC1) affects the functional properties of the myosin molecule. Using mass-spectrometry, we revealed phosphorylated peptides of LC1 in myosin from different fast skeletal muscles. Mutations S193D and T65D that mimic natural phosphorylation of LC1 were produced, and their effects on functional properties of the entire myosin molecule and isolated myosin head (S1) were studied. We have shown that T65D mutation drastically decreased the sliding velocity of thin filaments in an in vitro motility assay and strongly increased the duration of actin-myosin interaction in optical trap experiments. These effects of T65D mutation in LC1 observed only with the whole myosin but not with S1 were prevented by double T65D/S193D mutation. The T65D and T65D/S193D mutations increased actin-activated ATPase activity of S1 and decreased ADP affinity for the actin-S1 complex. The results indicate that pseudo-phosphorylation of LC1 differently affects the properties of the whole myosin molecule and its isolated head. Also, the results show that phosphorylation of LC1 of skeletal myosin could be one more mechanism of regulation of actin-myosin interaction that needs further investigation.


Asunto(s)
Actinas , Miosinas del Músculo Esquelético , Fosforilación , Miosinas , Músculo Esquelético
16.
Org Biomol Chem ; 21(2): 415-427, 2023 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-36530053

RESUMEN

The bioluminescence of Siberian earthworms Henlea sp. was found to be enhanced by two low molecular weight activators, termed ActH and ActS, found in the hot extracts. The fluorescence emission maximum of the activators matches the bioluminescence spectrum that peaks at 464 nm. We purified 4.3 and 8.8 micrograms of ActH and ActS from 200 worms and explored them using orbitrap HRMS with deep fragmentation and 1D/2D NMR equipped with cryoprobes. Their chemical structures were ascertained using chemical shift prediction services, structure elucidation software and database searches. ActH was identified as the riboflavin analoge archaeal cofactor F0, namely 7,8-didemethyl-8-hydroxy-5-deazariboflavin. ActS is a novel compound, namely ActH sulfated at the 3' ribityl hydroxyl. We designed and implemented a new four step synthesis strategy forActH that outperformed previous synthetic approaches. The synthetic ActH was identical to the natural one and activated Henlea sp. bioluminescence. The bioluminescence enhancement factor X was measured at different ActH concentrations and the Michaelis constant Km = 0.22 ± 0.01 µM was obtained by nonlinear regression. At an excess of synthetic ActH, the factor X was saturated at Xmax = 33.3 ± 0.5, thus opening an avenue to further characterisation of the Henlea sp. bioluminescence system. ActH did not produce bioluminescence without the luciferin with an as yet unknown chemical structure. We propose that ActH and the novel sulfated deazariboflavin ActS either emit the light of the Henlea sp. bioluminescence and/or accept hydride(s) donor upon luciferin oxidation.


Asunto(s)
Oligoquetos , Animales , Cosintropina , Factor X , Oxidación-Reducción , Luciferinas , Mediciones Luminiscentes
17.
Mar Drugs ; 22(1)2023 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-38248652

RESUMEN

In this study, a new l-rhamnose-binding lectin (GYL-R) from the hemolymph of bivalve Glycymeris yessoensis was purified using affinity and ion-exchange chromatography and functionally characterized. Lectin antimicrobial activity was examined in different ways. The lectin was inhibited by saccharides possessing the same configuration of hydroxyl groups at C-2 and C-4, such as l-rhamnose, d-galactose, lactose, l-arabinose and raffinose. Using the glycan microarray approach, natural carbohydrate ligands were established for GYL-R as l-Rha and glycans containing the α-Gal residue in the terminal position. The GYL-R molecular mass determined by MALDI-TOF mass spectrometry was 30,415 Da. The hemagglutination activity of the lectin was not affected by metal ions. The lectin was stable up to 75 °C and between pH 4.0 and 12.0. The amino acid sequence of the five GYL-R segments was obtained with nano-ESI MS/MS and contained both YGR and DPC-peptide motifs which are conserved in most of the l-rhamnose-binding lectin carbohydrate recognition domains. Circular dichroism confirmed that GYL is a α/ß-protein with a predominance of the random coil. Furthermore, GYL-R was able to bind and suppress the growth of the Gram-negative bacteria E. coli by recognizing lipopolysaccharides. Together, these results suggest that GYL-R is a new member of the RBL family which participates in the self-defense mechanism against bacteria and pathogens with a distinct carbohydrate-binding specificity.


Asunto(s)
Bivalvos , Lectinas , Animales , Lectinas/farmacología , Ramnosa , Escherichia coli , Espectrometría de Masas en Tándem , Antibacterianos/farmacología
18.
Int J Mol Sci ; 23(23)2022 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-36499712

RESUMEN

Gly m 4 is the major soybean allergen, causing birch pollen cross allergic reactions. In some cases, Gly m 4-mediated anaphylaxis takes place, but the causative factors are still unknown. Here, we studied the structural and immunologic properties of Gly m 4 to shed light on this phenomenon. We showed that Gly m 4 retained its structure and IgE-binding capacity after heating. Gly m 4 was cleaved slowly under nonoptimal gastric conditions mimicking duodenal digestion, and IgE from the sera of allergic patients interacted with the intact allergen rather than with its proteolytic fragments. Similar peptide clusters of Bet v 1 and Gly m 4 were formed during allergen endolysosomal degradation in vitro, but their sequence identity was insignificant. Animal polyclonal anti-Gly m 4 and anti-Bet v 1 IgG weakly cross-reacted with Bet v 1 and Gly m 4, respectively. Thus, we supposed that not only conserved epitopes elicited cross-reactivity with Bet v 1, but also variable epitopes were present in the Gly m 4 structure. Our data suggests that consumption of moderately processed soybean-based drinks may lead to the neutralizing of gastric pH as a result of which intact Gly m 4 can reach the human intestine and cause IgE-mediated system allergic reactions.


Asunto(s)
Anafilaxia , Hipersensibilidad a los Alimentos , Animales , Humanos , Glycine max/metabolismo , Inmunoglobulina E , Polen/metabolismo , Alérgenos , Reacciones Cruzadas , Anafilaxia/etiología , Antígenos de Plantas , Proteínas de Plantas
19.
Front Microbiol ; 13: 1003942, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36204611

RESUMEN

The importance of the impact of human hormones on commensal microbiota and microbial biofilms is established in lots of studies. In the present investigation, we continued and extended the research of epinephrine effects on the skin commensal Micrococcus luteus C01 and its biofilms, and also the matrix changes during the biofilm growth. Epinephrine in concentration 4.9 × 10-9 M which is close to normal blood plasma level increased the amount of polysaccharides and extracellular DNA in the matrix, changed extensively its protein, lipid and polysaccharide composition. The Ef-Tu factor was one of the most abundant proteins in the matrix and its amount increased in the presence of the hormone. One of the glucose-mannose polysaccharide was absent in the matrix in presence of epinephrine after 24 h of incubation. The matrix phospholipids were also eradicated by the addition of the hormone. Hence, epinephrine has a great impact on the M. luteus biofilms and their matrix composition, and this fact opens wide perspectives for the future research.

20.
Front Cell Infect Microbiol ; 12: 918557, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35873139

RESUMEN

Mycoplasma hominis is an opportunistic urogenital pathogen in vertebrates. It is a non-glycolytic species that produces energy via arginine degradation. Among genital mycoplasmas, M. hominis is the most commonly reported to play a role in systemic infections and can persist in the host for a long time. However, it is unclear how M. hominis proceeds under arginine limitation. The recent metabolic reconstruction of M. hominis has demonstrated its ability to catabolize deoxyribose phosphate to produce ATP. In this study, we cultivated M. hominis on two different energy sources (arginine and thymidine) and demonstrated the differences in growth rate, antibiotic sensitivity, and biofilm formation. Using label-free quantitative proteomics, we compared the proteome of M. hominis under these conditions. A total of 466 proteins were identified from M. hominis, representing approximately 85% of the predicted proteome, while the levels of 94 proteins changed significantly. As expected, we observed changes in the levels of metabolic enzymes. The energy source strongly affects the synthesis of enzymes related to RNA modifications and ribosome assembly. The translocation of lipoproteins and other membrane-associated proteins was also impaired. Our study, the first global characterization of the proteomic switching of M. hominis in arginine-deficiency media, illustrates energy source-dependent control of pathogenicity factors and can help to determine the mechanisms underlying the interaction between the growth rate and fitness of genome-reduced bacteria.


Asunto(s)
Mycoplasma hominis , Proteoma , Arginina/metabolismo , Lipoproteínas/metabolismo , Mycoplasma hominis/genética , Mycoplasma hominis/metabolismo , Proteoma/metabolismo , Proteómica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA