Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-21260791

RESUMEN

IntroductionThe outbreak of COVID-19 has differentially affected countries in the world, with health infrastructure and other related vulnerability indicators playing a role in determining the extent of the COVID-19 spread. Vulnerability of a geographical region/country to COVID-19 has been a topic of interest, particularly in low- and middle-income countries like India to assess the multi-factorial impact of COVID-19 on the incidence, prevalence or mortality data. Datasets and MethodsBased on publicly reported socio-economic, demographic, health-based and epidemiological data from national surveys in India, we compute contextual, COVID-19 Vulnerability Indices (cVIs) across multiple thematic resolutions for different geographical and spatial administrative regions. These multi-resolution cVIs were used in regression models to assess their impact on indicators of the spread of COVID-19 such as the average time-varying instantaneous reproduction number. ResultsOur observational study was focused on 30 districts of the eastern Indian state of Odisha. It is an agrarian state, prone to natural disasters and one of the largest contributors of an unprotected migrant workforce. Our analyses identified housing and hygiene conditions, availability of health care and COVID preparedness as important spatial indicators. ConclusionOdisha has demonstrated success in containing the COVID-19 infection to a reasonable level with proactive measures to contain the spread of the virus during the first wave. However, with the onset of the second wave of COVID, the virus has been making inroads into the hinterlands and peripheral districts of the state, burdening the already deficient public health system in these areas. The vulnerability index presented in this paper identified vulnerable districts in Odisha. While some of them may not have a large number of COVID-19 cases at a given point of time, they could experience repercussions of the pandemic. Improved understanding of the factors driving COVID-19 vulnerability will help policy makers prioritise resources and regions leading to more effective mitigation strategies for the COVID-19 pandemic and beyond. O_TEXTBOXWHAT IS ALREADY KNOWNMeasuring vulnerability to COVID-19 and other pandemics is a complex and layered subject. In Low-to-Middle-Income Country (LMIC) like India, complete reliance on incidence, prevalence or mortality data of the disease may not be the best measure since this data from the health system and DHS in public domain is limited. ADDED VALUE OF THIS STUDYTo our knowledge, this is the first study at the district level concerning the COVID-19 situation in Odisha, characterized by a large tribal and migrant population. We defined vulnerability through relevant socio-economic domains that have an influence on mitigation strategies. Although we applied our methods to the districts of Odisha, we believe they can be used in other LMIC regions. IMPLICATIONS OF THE FINDINGSRegions with higher overall or theme-specific vulnerability index might experience potentially severe consequences of the COVID-19 outbreak demanding precise, dynamic and nimble policy decisions to prevent a potentially dire situation. C_TEXTBOX

2.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-21259405

RESUMEN

India has seen a surge of SARS-CoV-2 infections and deaths in early part of 2021, despite having controlled the epidemic during 2020. Building on a two-strain, semi-mechanistic model that synthesizes mortality and genomic data, we find evidence that altered epidemiological properties of B.1.617.2 (Delta) variant play an important role in this resurgence in India. Under all scenarios of immune evasion, we find an increased transmissibility advantage for B.1617.2 against all previously circulating strains. Using an extended SIR model accounting for reinfections and wanning immunity, we produce evidence in support of how early public interventions in March 2021 would have helped to control transmission in the country. We argue that enhanced genomic surveillance along with constant assessment of risk associated with increased transmission is critical for pandemic responsiveness. One Sentence SummaryAltered epidemiological characteristics of B.1.617.2 and delayed public health interventions contributed to the resurgence of SARS-CoV-2 in India from February to May 2021.

3.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-21253772

RESUMEN

Modeling the dynamics of COVID-19 pandemic spread is a challenging and relevant problem. Established models for the epidemic spread such as compartmental epidemiological models e.g. Susceptible-Infected-Recovered (SIR) models and its variants, have been discussed extensively in the literature and utilized to forecast the growth of the pandemic across different hot-spots in the world. The standard formulations of SIR models rely upon summary-level data, which may not be able to fully capture the complete dynamics of the pandemic growth. Since the disease spreads from carriers to susceptible individuals via some form of contact, it inherently relies upon a network of individuals for its growth, with edges established via direct interaction, such as shared physical proximity. Using individual-level COVID-19 data from the early days (January 30 to April 15, 2020) of the pandemic in India, and under a network-based SIR model framework, we performed state-specific forecasting under multiple scenarios characterized by the basic reproduction number of COVID-19 across 34 Indian states and union territories. We validated our short-term projections using observed case counts and the long-term projections using national sero-survey findings. Based on healthcare availability data, we also performed projections to assess the burdens on the infrastructure along the spectrum of the pandemic growth. We have developed an interactive dashboard summarizing our results. Our predictions successfully identified the initial hot-spots of India such as Maharashtra and Delhi, and those that emerged later, such as Madhya Pradesh and Kerala. These models have the potential to inform appropriate policies for isolation and mitigation strategies to contain the pandemic, through a phased approach by appropriate resource prioritization and allocation.

4.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-20198010

RESUMEN

Many popular disease transmission models have helped nations respond to the COVID-19 pandemic by informing decisions about pandemic planning, resource allocation, implementation of social distancing measures and other non-pharmaceutical interventions. We study how five epidemiological models forecast and assess the course of the pandemic in India: a baseline model, an extended SIR (eSIR) model, two extended SEIR (SAPHIRE and SEIR-fansy) models, and a semi-mechanistic Bayesian hierarchical model (ICM). Using COVID-19 data for India from March 15 to June 18 to train the models, we generate predictions from each of the five models from June 19 to July 18. To compare prediction accuracy with respect to reported cumulative and active case counts and cumulative death counts, we compute the symmetric mean absolute prediction error (SMAPE) for each of the five models. For active case counts, SMAPE values are 0.72 (SEIR-fansy) and 33.83 (eSIR). For cumulative case counts, SMAPE values are 1.76 (baseline) 23.10 (eSIR), 2.07 (SAPHIRE) and 3.20 (SEIR-fansy). For cumulative death counts, the SMAPE values are 7.13 (SEIR-fansy) and 26.30 (eSIR). For cumulative cases and deaths, we compute Pearsons and Lins correlation coefficients to investigate how well the projected and observed reported COVID-counts agree. Three models (SAPHIRE, SEIR-fansy and ICM) return total (sum of reported and unreported) counts as well. We compute underreporting factors as of June 30 and note that the SEIR-fansy model reports the highest underreporting factor for active cases (6.10) and cumulative deaths (3.62), while the SAPHIRE model reports the highest underreporting factor for cumulative cases (27.79).

5.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-20166249

RESUMEN

Underreporting of COVID-19 cases and deaths is a hindrance to correctly modeling and monitoring the pandemic. This is primarily due to limited testing, lack of reporting infrastructure and a large number of asymptomatic infections. In addition, diagnostic tests (RT-PCR tests for detecting current infection) and serological antibody tests for IgG (to assess past infections) are imperfect. In particular, the diagnostic tests have a high false negative rate. Epidemiologic models with a latent compartment for unascertained infections like the Susceptible-Exposed-Infected-Removed (SEIR) models can provide predictions for unreported cases and deaths under certain assumptions. Typically, the number of unascertained cases is unobserved and thus we cannot validate these estimates for a real study except for simulation studies. Population-based seroprevalence studies can provide a rough estimate of the total number of infections and help us check epidemiologic model projections. In this paper, we develop a method to account for high false negative rates in RT-PCR in an extension to the classic SEIR model. We apply this method to Delhi, the national capital region of India, with a population of 19.8 million and a COVID-19 hotspot of the country, obtaining estimates of underreporting factor for cases at 34-53 times and that for deaths at 8-13 times. Based on a recently released serological survey for Delhi with an estimated 22.86% seroprevalence, we compute adjusted estimates of the true number of infections reported by the survey (after accounting for misclassification of the antibody test results) which is largely consistent with the model outputs, yielding an underreporting factor for cases from 30-42. Together with the model and the serosurvey, this implies approximately 96-98% cases in Delhi remained unreported and whereas only 109,140 cases were reported on July 10, the true number of infections varied somewhere between 4.4-4.6 million across different estimates. While repeated serological monitoring is resource intensive, model-based adjustments, run with the most up to date data, can provide a viable option to keep track of the unreported cases and deaths and gauge the true extent of transmission of this insidious virus.

6.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-20113043

RESUMEN

IntroductionIndia has been under four phases of a national lockdown from March 25 to May 31 in response to the COVID-19 pandemic. Unmasking the state-wise variation in the effect of the nationwide lockdown on the progression of the pandemic could inform dynamic policy interventions towards containment and mitigation. MethodsUsing data on confirmed COVID-19 cases across 20 states that accounted for more than 99% of the cumulative case counts in India till May 31, 2020, we illustrate the masking of state-level trends and highlight the variations across states by presenting evaluative evidence on some aspects of the COVID-19 outbreak: case-fatality rates, doubling times of cases, effective reproduction numbers, and the scale of testing. ResultsThe estimated effective reproduction number R for India was 3.36 (95% confidence interval (CI): [3.03, 3.71]) on March 24, whereas the average of estimates from May 25 - May 31 stands at 1.27 (95% CI: [1.26, 1.28]). Similarly, the estimated doubling time across India was at 3.56 days on March 24, and the past 7-day average for the same on May 31 is 14.37 days. The average daily number of tests have increased from 1,717 (March 19-25) to 131,772 (May 25-31) with an estimated testing shortfall of 4.58 million tests nationally by May 31. However, various states exhibit substantial departures from these national patterns. ConclusionsPatterns of change over lockdown periods indicate the lockdown has been effective in slowing the spread of the virus nationally. The COVID-19 outbreak in India displays large state-level variations and identifying these variations can help in both understanding the dynamics of the pandemic and formulating effective public health interventions. Our framework offers a holistic assessment of the pandemic across Indian states and union territories along with a set of interactive visualization tools that are daily updated at covind19.org.

7.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-20067256

RESUMEN

ImportanceIndia has taken strong and early public health measures for arresting the spread of the COVID-19 epidemic. With only 536 COVID-19 cases and 11 fatalities, India - a democracy of 1.34 billion people - took the historic decision of a 21-day national lockdown on March 25. The lockdown was further extended to May 3rd, soon after the analysis of this paper was completed. ObjectiveTo study the short- and long-term impact of an initial 21-day lockdown on the total number of COVID-19 cases in India compared to other less severe non-pharmaceutical interventions using epidemiological forecasting models and Bayesian estimation algorithms; to compare effects of hypothetical durations of lockdown from an epidemiological perspective; to study alternative explanations for slower growth rate of the virus outbreak in India, including exploring the association of the number of cases and average monthly temperature; and finally, to outline the pivotal role of reliable and transparent data, reproducible data science methods, tools and products as we reopen the country and prepare for a post lock-down phase of the pandemic. Design, Setting, and ParticipantsWe use the daily data on the number of COVID-19 cases, of recovered and of deaths from March 1 until April 7, 2020 from the 2019 Novel Coronavirus Visual Dashboard operated by the Johns Hopkins University Center for Systems Science and Engineering (JHU CSSE). Additionally, we use COVID-19 incidence counts data from Kaggle and the monthly average temperature of major cities across the world from Wikipedia. Main Outcome and MeasuresThe current time-series data on daily proportions of cases and removed (recovered and death combined) from India are analyzed using an extended version of the standard SIR (susceptible, infected, and removed) model. The eSIR model incorporates time-varying transmission rates that help us predict the effect of lockdown compared to other hypothetical interventions on the number of cases at future time points. A Markov Chain Monte Carlo implementation of this model provided predicted proportions of the cases at future time points along with credible intervals (CI). ResultsOur predicted cumulative number of COVID-19 cases in India on April 30 assuming a 1-week delay in peoples adherence to a 21-day lockdown (March 25 - April 14) and a gradual, moderate resumption of daily activities after April 14 is 9,181 with upper 95% CI of 72,245. In comparison, the predicted cumulative number of cases under "no intervention" and "social distancing and travel bans without lockdown" are 358 thousand and 46 thousand (upper 95% CI of nearly 2.3 million and 0.3 million) respectively. An effective lockdown can prevent roughly 343 thousand (upper 95% CI 1.8 million) and 2.4 million (upper 95% CI 38.4 million) COVID-19 cases nationwide compared to social distancing alone by May 15 and June 15, respectively. When comparing a 21-day lockdown with a hypothetical lockdown of longer duration, we find that 28-, 42-, and 56-day lockdowns can approximately prevent 238 thousand (upper 95% CI 2.3 million), 622 thousand (upper 95% CI 4.3 million), 781 thousand (upper 95% CI 4.6 million) cases by June 15, respectively. We find some suggestive evidence that the COVID-19 incidence rates worldwide are negatively associated with temperature in a crude unadjusted analysis with Pearson correlation estimates [95% confidence interval] between average monthly temperature and total monthly incidence around the world being -0.185 [-0.548, 0.236] for January, -0.110 [-0.362, 0.157] for February, and -0.173 [-0.314, -0.026] for March. Conclusions and RelevanceThe lockdown, if implemented correctly in the end, has a high chance of reducing the total number of COVID-19 cases in the short term, and buy India invaluable time to prepare its healthcare and disease monitoring system. Our analysis shows we need to have some measures of suppression in place after the lockdown for the best outcome. We cannot heavily rely on the hypothetical prevention governed by meteorological factors such as temperature based on current evidence. From an epidemiological perspective, a longer lockdown between 42-56 days is preferable. However, the lockdown comes at a tremendous price to social and economic health through a contagion process not dissimilar to that of the coronavirus itself. Data can play a defining role as we design post-lockdown testing, reopening and resource allocation strategies. SoftwareOur contribution to data science includes an interactive and dynamic app (covind19.org) with short- and long-term projections updated daily that can help inform policy and practice related to COVID-19 in India. Anyone can visualize the observed data for India and create predictions under hypothetical scenarios with quantification of uncertainties. We make our prediction codes freely available (https://github.com/umich-cphds/cov-ind-19) for reproducible science and for other COVID-19 affected countries to use them for their prediction and data visualization work.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA