Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Anim Genet ; 52(5): 714-719, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34231238

RESUMEN

Progressive retinal atrophy (PRA), common autosomal recessive disorder affecting several dog breeds including Shih Tzu, is characterized by degeneration of photoreceptors leading to blindness. To identify PRA genetic variants, three affected and 15 unaffected Shih Tzu and 20 non-Shih Tzu were recruited. Dogs underwent ophthalmologic examination and electroretinography, revealing hallmark retina pathological changes and an abnormal electroretinography in all affected dogs but not in unaffected dogs. WGS was performed. Non-synonymous homozygous variants were searched in coding regions of genes involved in retinal diseases/development; the criterion was that variants should only be present in affected dogs and should be absent in both unaffected and 46 genomes of dogs (from an available evolutionary database). Only one out of the 109 identified variants is predicted to harbor a high-impact consequence, a nonsense c.452A>C (p.L151X) in the JPH2 gene. The genotype of JPH2 variant in all 38 dogs was determined with Sanger sequencing. All three affected dogs, but none of the 35 unaffected, were homozygous for the nonsense variant. JPH2 has been previously found to be expressed in several excitable cells/tissues including retina photoreceptors. Hence, JPH2 is a candidate gene for PRA in Shih Tzu.


Asunto(s)
Codón sin Sentido , Enfermedades de los Perros/genética , Perros/genética , Proteínas de la Membrana/genética , Proteínas Musculares/genética , Degeneración Retiniana/veterinaria , Animales , Cruzamiento , Genotipo , Homocigoto , Degeneración Retiniana/genética , Secuenciación Completa del Genoma
2.
Mol Biotechnol ; 56(3): 258-64, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24078218

RESUMEN

Embryonic stem cell (ESC)-derived cardiomyocytes are a promising cell source for the screening for potential cytoprotective molecules against ischemia/reperfusion injury, however, little is known on their behavior in hypoxia/reoxygenation conditions. Here we tested the cytoprotective effect of the NO-donor SNAP and its downstream cellular pathway. Mouse ESC-derived cardiomyocytes were subjected to 150-min simulated ischemia (SI) followed by 120-min reoxygenation or corresponding non-ischemic conditions. The following treatments were applied during SI or normoxia: the NO-donor S-Nitroso-N-acetyl-D,L-penicillamine (SNAP), the protein kinase G (PKG) inhibitor, the KATP channel blocker glibenclamide, the particulate guanylate cyclase activator brain type natriuretic peptide (BNP), and a non-specific NO synthase inhibitor (N-Nitro-L-arginine, L-NNA) alone or in different combinations. Viability of cells was assayed by propidium iodide staining. SNAP attenuated SI-induced cell death in a concentration-dependent manner, and this protection was attenuated by inhibition of either PKG or KATP channels. However, SI-induced cell death was not affected by BNP or by L-NNA. We conclude that SNAP protects mESC-derived cardiomyocytes against SI/R injury and that soluble guanylate-cyclase, PKG, and KATP channels play a role in the downstream pathway of SNAP-induced cytoprotection. The present mESC-derived cardiomyocyte based screening platform is a useful tool for discovery of cytoprotective molecules.


Asunto(s)
Células Madre Embrionarias/citología , Isquemia/tratamiento farmacológico , Miocitos Cardíacos/citología , Óxido Nítrico/metabolismo , S-Nitroso-N-Acetilpenicilamina/farmacología , Animales , Muerte Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Ratones , Ratones Endogámicos C57BL
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA