Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Materials (Basel) ; 14(16)2021 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-34443151

RESUMEN

The aim of the research presented in the article was to check the differences in the hygro-thermal and mechanical properties of hemp-lime composites with different shives fractions, depending on the direction of mixture compaction. The research part of the paper presents the preparation method and investigation on the composites. Thermal conductivity, capillary uptake, as well as flexural and compressive strengths were examined. Additionally, an analysis of the temperature distribution in the external wall insulated with the tested composites was performed. The results confirm that the direction of compaction influences the individual properties of the composites in a similar way, depending on the size of the shives. The differences are more pronounced in the case of the composite containing longer fractions of shives. Both thermal conductivity of the material and the capillary uptake ability are lower in the parallel direction of the compaction process. Composites exhibit greater stiffness, but they fail faster with increasing loads when loaded in the direction perpendicular to compaction.

2.
Materials (Basel) ; 13(23)2020 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-33260830

RESUMEN

Different fractions of hemp shives are used in the mixtures of the hemp-lime composite. The market offers shives of different granulation. It depends on the type of industrial hemp and on the capabilities of decortication machines. The aim of the research presented in the article is to check differences in the mechanical and hygro-thermal properties of composites with different shives fractions. The research part of the paper presents the preparation method and investigation on hemp-lime composites. Apparent density, total porosity, thermal conductivity, capillary uptake, vapor permeability, specific heat, mass absorptivity, flexural and compressive strength were examined. The results confirm that the shives fraction influences the individual properties of the composites. Hemp-lime composites with fine shives are characterized by higher water absorption, thermal conductivity, mechanical strength, vapor permeability as well as lower capillary-lifting capacity and specific heat than composites with thick shives.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA