Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 3070, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38594249

RESUMEN

Cellular response to redox imbalance is crucial for organismal health. microRNAs are implicated in stress responses. ALG-1, the C. elegans ortholog of human AGO2, plays an essential role in microRNA processing and function. Here we investigated the mechanisms governing ALG-1 expression in C. elegans and the players controlling lifespan and stress resistance downstream of ALG-1. We show that upregulation of ALG-1 is a shared feature in conditions linked to increased longevity (e.g., germline-deficient glp-1 mutants). ALG-1 knockdown reduces lifespan and oxidative stress resistance, while overexpression enhances survival against pro-oxidant agents but not heat or reductive stress. R02D3.7 represses alg-1 expression, impacting oxidative stress resistance at least in part via ALG-1. microRNAs upregulated in glp-1 mutants (miR-87-3p, miR-230-3p, and miR-235-3p) can target genes in the protein disulfide isomerase pathway and protect against oxidative stress. This study unveils a tightly regulated network involving transcription factors and microRNAs which controls organisms' ability to withstand oxidative stress.


Asunto(s)
Proteínas de Caenorhabditis elegans , MicroARNs , Animales , Humanos , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Estrés Oxidativo/genética , Péptido 1 Similar al Glucagón/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo
2.
Proc Natl Acad Sci U S A ; 119(35): e2200960119, 2022 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-35951647

RESUMEN

Although increasing evidence confirms neuropsychiatric manifestations associated mainly with severe COVID-19 infection, long-term neuropsychiatric dysfunction (recently characterized as part of "long COVID-19" syndrome) has been frequently observed after mild infection. We show the spectrum of cerebral impact of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, ranging from long-term alterations in mildly infected individuals (orbitofrontal cortical atrophy, neurocognitive impairment, excessive fatigue and anxiety symptoms) to severe acute damage confirmed in brain tissue samples extracted from the orbitofrontal region (via endonasal transethmoidal access) from individuals who died of COVID-19. In an independent cohort of 26 individuals who died of COVID-19, we used histopathological signs of brain damage as a guide for possible SARS-CoV-2 brain infection and found that among the 5 individuals who exhibited those signs, all of them had genetic material of the virus in the brain. Brain tissue samples from these five patients also exhibited foci of SARS-CoV-2 infection and replication, particularly in astrocytes. Supporting the hypothesis of astrocyte infection, neural stem cell-derived human astrocytes in vitro are susceptible to SARS-CoV-2 infection through a noncanonical mechanism that involves spike-NRP1 interaction. SARS-CoV-2-infected astrocytes manifested changes in energy metabolism and in key proteins and metabolites used to fuel neurons, as well as in the biogenesis of neurotransmitters. Moreover, human astrocyte infection elicits a secretory phenotype that reduces neuronal viability. Our data support the model in which SARS-CoV-2 reaches the brain, infects astrocytes, and consequently, leads to neuronal death or dysfunction. These deregulated processes could contribute to the structural and functional alterations seen in the brains of COVID-19 patients.


Asunto(s)
Encéfalo , COVID-19 , Enfermedades Virales del Sistema Nervioso Central , SARS-CoV-2 , Astrocitos/patología , Astrocitos/virología , Encéfalo/patología , Encéfalo/virología , COVID-19/complicaciones , COVID-19/patología , Enfermedades Virales del Sistema Nervioso Central/etiología , Enfermedades Virales del Sistema Nervioso Central/patología , Humanos , Síndrome Post Agudo de COVID-19
3.
Proc Natl Acad Sci U S A ; 117(38): 23932-23941, 2020 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-32900951

RESUMEN

DICER is a key enzyme in microRNA (miRNA) biogenesis. Here we show that aerobic exercise training up-regulates DICER in adipose tissue of mice and humans. This can be mimicked by infusion of serum from exercised mice into sedentary mice and depends on AMPK-mediated signaling in both muscle and adipocytes. Adipocyte DICER is required for whole-body metabolic adaptations to aerobic exercise training, in part, by allowing controlled substrate utilization in adipose tissue, which, in turn, supports skeletal muscle function. Exercise training increases overall miRNA expression in adipose tissue, and up-regulation of miR-203-3p limits glycolysis in adipose under conditions of metabolic stress. We propose that exercise training-induced DICER-miR-203-3p up-regulation in adipocytes is a key adaptive response that coordinates signals from working muscle to promote whole-body metabolic adaptations.


Asunto(s)
Tejido Adiposo/metabolismo , ARN Helicasas DEAD-box/metabolismo , Ejercicio Físico/fisiología , Ribonucleasa III/metabolismo , Proteínas Quinasas Activadas por AMP/metabolismo , Adaptación Fisiológica/fisiología , Adipocitos/metabolismo , Animales , Células Cultivadas , ARN Helicasas DEAD-box/deficiencia , ARN Helicasas DEAD-box/genética , Femenino , Glucólisis , Humanos , Masculino , Ratones , Ratones Noqueados , MicroARNs/genética , MicroARNs/metabolismo , Condicionamiento Físico Animal , Ribonucleasa III/deficiencia , Ribonucleasa III/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA