Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Eur J Neurosci ; 59(10): 2450-2464, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38480476

RESUMEN

Amphetamine (AMPH) exposure induces behavioural and neurochemical sensitization observed in rodents as hyperlocomotion and increased dopamine release in response to a subsequent dose. Brain Angiotensin II modulates dopaminergic neurotransmission through its AT1 receptors (AT1-R), positively regulating striatal dopamine synthesis and release. This work aims to evaluate the AT1-R role in the development and maintenance of AMPH-induced sensitization. Also, the AT1-R involvement in striatal dopamine reuptake was analysed. The sensitization protocol consisted of daily AMPH administration for 5 days and tested 21 days after withdrawal. An AT1-R antagonist, candesartan, was administered before or after AMPH exposure to evaluate the participation of AT1-R in the development and maintenance of sensitization, respectively. Sensitization was evaluated by locomotor activity and c-Fos immunostaining. Changes in dopamine reuptake kinetics were evaluated 1 day after AT1-R blockade withdrawal treatment, with or without the addition of AMPH in vitro. The social interaction test was performed as another behavioural output. Repeated AMPH exposure induced behavioural and neurochemical sensitization, which was prevented and reversed by candesartan. The AT1-R blockade increased the dopamine reuptake kinetics. Neither the AMPH administration nor the AT1-R blockade altered the performance of social interaction. Our results highlight the AT1-R's crucial role in AMPH sensitization. The enhancement of dopamine reuptake kinetics induced by the AT1-R blockade might attenuate the neuroadaptive changes that lead to AMPH sensitization and its self-perpetuation. Therefore, AT1-R is a prominent candidate as a target for pharmacological treatment of pathologies related to dopamine imbalance, including drug addiction and schizophrenia.


Asunto(s)
Anfetamina , Bloqueadores del Receptor Tipo 1 de Angiotensina II , Angiotensina II , Bencimidazoles , Compuestos de Bifenilo , Cuerpo Estriado , Dopamina , Animales , Anfetamina/farmacología , Masculino , Dopamina/metabolismo , Cuerpo Estriado/efectos de los fármacos , Cuerpo Estriado/metabolismo , Angiotensina II/farmacología , Compuestos de Bifenilo/farmacología , Bencimidazoles/farmacología , Bloqueadores del Receptor Tipo 1 de Angiotensina II/farmacología , Ratas Wistar , Ratas , Receptor de Angiotensina Tipo 1/metabolismo , Tetrazoles/farmacología , Estimulantes del Sistema Nervioso Central/farmacología , Interacción Social/efectos de los fármacos , Actividad Motora/efectos de los fármacos , Proteínas Proto-Oncogénicas c-fos/metabolismo
2.
Biosens Bioelectron X ; 12: 100222, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36118917

RESUMEN

We report two novel genosensors for the quantification of SARS-CoV-2 nucleic acid using glassy carbon electrodes modified with a biocapture nanoplatform made of multi-walled carbon nanotubes (MWCNTs) non-covalently functionalized with avidin (Av) as a support of the biotinylated-DNA probes. One of the genosensors was based on impedimetric transduction offering a non-labelled and non-amplified detection of SARS-CoV-2 nucleic acid through the increment of [Fe(CN)6]3-/4- charge transfer resistance. This biosensor presented an excellent analytical performance, with a linear range of 1.0 × 10-18 M - 1.0 × 10-11 M, a sensitivity of (5.8 ± 0.6) x 102 Ω M-1 (r2 = 0.994), detection and quantification limits of 0.33 aM and 1.0 aM, respectively; and reproducibilities of 5.4% for 1.0 × 10-15 M target using the same MWCNTs-Av-bDNAp nanoplatform, and 6.9% for 1.0 × 10-15 M target using 3 different nanoplatforms. The other genosensor was based on a sandwich hybridization scheme and amperometric transduction using the streptavidin(Strep)-biotinylated horseradish peroxidase (bHRP)/hydrogen peroxide/hydroquinone (HQ) system. This genosensor allowed an extremely sensitive quantification of the SARS-CoV-2 nucleic acid, with a linear range of 1.0 × 10-20 M - 1.0 × 10-17 M, detection limit at zM level, and a reproducibility of 11% for genosensors prepared with the same MWCNTs-Av-bDNAp1 nanoplatform. As a proof-of-concept, and considering the extremely high sensitivity, the genosensor was challenged with highly diluted samples obtained from SARS-CoV-2 RNA PCR amplification.

3.
J Pharm Biomed Anal ; 189: 113478, 2020 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-32768875

RESUMEN

MicroRNAs (miRNAs) are non-coding regulatory RNAs that play an important role in RNA silencing and post-transcriptional gene expression regulation. Since their dysregulation has been associated with Alzheimer disease, cardiovascular diseases and different types of cancer, among others, miRNAs can be used as biomarkers for early diagnosis and prognosis of these diseases. The methods commonly used to quantify miRNAs are, in general, complex, costly, with limited application for point-of-care devices or resource-limited facilities. Electrochemical biosensors, mainly those based on nanomaterials, have emerged as a promising alternative to the conventional miRNA detection methods and have paved the way to the development of sensitive, fast, and low-cost detection systems. This review is focused on the most relevant contributions performed in the field of electrochemical miRNAs biosensors between 2017 and the beginning of 2020. The main contribution of this article is the critical discussion of the different amplification strategies and the comparative analysis between amplified and non-amplified miRNA electrochemical biosensing and between the different amplification schemes. Particular emphasis was given to the importance of the nanostructures, enzymes, labelling molecules, and special sequences of nucleic acids or analogues on the organization of the different bioanalytical platforms, the transduction of the hybridization event and the generation the analytical signal.


Asunto(s)
Técnicas Biosensibles , MicroARNs , Nanoestructuras , Técnicas Electroquímicas , MicroARNs/genética , Hibridación de Ácido Nucleico
4.
ACS Appl Mater Interfaces ; 10(28): 23501-23508, 2018 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-29985579

RESUMEN

We report the first optical biosensor for the novel and important cardiac biomarker, galectin-3 (Gal3), using the anti-Gal3 antibody as a biorecognition element and surface plasmon resonance (SPR) for transducing the bioaffinity event. The immunosensing platform was built at a thiolated Au surface modified by self-assembling four bilayers of poly(diallyldimethylammonium chloride) and graphene oxide (GO), followed by the covalent attachment of 3-aminephenylboronic acid (3ABA). The importance of GO, both as the anchoring point of the antibody and as a field enhancer for improving the biosensor sensitivity, was critically discussed. The advantages of using 3ABA to orientate the anti-Gal3 antibody through the selective link to the Fc region were also demonstrated. The new platform represents an interesting alternative for the label-free biosensing of Gal3 in the whole range of clinically relevant concentrations (linear range between 10.0 and 50.0 ng mL-1, detection limit of 2.0 ng mL-1) with successful application for Gal3 biosensing in enriched human serum samples.


Asunto(s)
Resonancia por Plasmón de Superficie , Biomarcadores , Técnicas Biosensibles , Galectina 3 , Oro , Grafito , Humanos , Inmunoensayo
5.
Bioelectrochemistry ; 99: 8-16, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24951898

RESUMEN

We report the quantification of promethazine (PMZ) using glassy carbon electrodes (GCE) modified with bamboo-like multi-walled carbon nanotubes (bCNT) dispersed in double stranded calf-thymus DNA (dsDNA) (GCE/bCNT-dsDNA). Cyclic voltammetry measurements demonstrated that PMZ presents a thin film-confined redox behavior at GCE/bCNT-dsDNA, opposite to the irreversibly-adsorbed behavior obtained at GCE modified with bCNT dispersed in ethanol (GCE/bCNT). Differential pulse voltammetry-adsorptive stripping with medium exchange experiments performed with GCE/bCNT-dsDNA and GCE modified with bCNTs dispersed in single-stranded calf-thymus DNA (ssDNA) confirmed that the interaction between PMZ and bCNT-dsDNA is mainly hydrophobic. These differences are due to the intercalation of PMZ within the dsDNA that supports the bCNTs, as evidenced from the bathochromic displacement of UV-Vis absorption spectra of PMZ and quantum dynamics calculations at DFTB level. The efficient accumulation of PMZ at GCE/bCNT-dsDNA made possible its sensitive quantification at nanomolar levels (sensitivity: (3.50±0.05)×10(8) µA·cm(-2)·M(-1) and detection limit: 23 nM). The biosensor was successfully used for the determination of PMZ in a pharmaceutical product with excellent correlation.


Asunto(s)
Antialérgicos/análisis , Técnicas Biosensibles/instrumentación , ADN/química , Nanotubos de Carbono/química , Prometazina/análisis , Animales , Bovinos , Técnicas Electroquímicas/instrumentación , Electrodos , Diseño de Equipo , Límite de Detección , Modelos Moleculares
6.
Colloids Surf B Biointerfaces ; 108: 329-36, 2013 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-23563301

RESUMEN

We report for the first time the use of double stranded calf-thymus DNA (dsDNA) to successfully disperse bamboo-like multi-walled carbon nanotubes (bCNT). The dispersion and the modified electrodes were studied by different spectroscopic, microscopic and electrochemical techniques. The drastic treatment for dispersing the bCNT (45min sonication in a 50% (v/v) ethanol:water solution), produces a partial denaturation and a decrease in the length of dsDNA that facilitates the dispersion of CNT and makes possible an efficient electron transfer of guanine residues to the electrode. A critical analysis of the influence of different experimental conditions on the efficiency of the dispersion and on the performance of glassy carbon electrodes (GCE) modified with bCNT-dsDNA dispersion is also reported. The electron transfer of redox probes and guanine residues was more efficient at GCE modified with bCNT dispersed in dsDNA than at GCE modified with hollow CNT (hCNT) dispersed in dsDNA, demonstrating the importance of the presence of bCNT.


Asunto(s)
ADN/química , Técnicas Electroquímicas/instrumentación , Guanina/química , Peróxido de Hidrógeno/química , Nanotubos de Carbono/química , Animales , Bovinos , Electrodos , Oxidación-Reducción , Sonicación , Espectroscopía Infrarroja por Transformada de Fourier
7.
J Nanosci Nanotechnol ; 8(11): 6003-9, 2008 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19198338

RESUMEN

We report the highly selective and sensitive voltammetric dopamine quantification in the presence of ascorbic acid and serotonin by using glassy carbon electrodes modified with a dispersion of multi-wall carbon nanotubes (MWCNT) in polyethylenimine, PEI (GCE/MWCNT-PEI). The electrocatalytic activity of the MWCNT deposited on the glassy carbon electrode has allowed an important decrease in the overvoltages for the oxidation of ascorbic acid and dopamine, making possible a clear definition of dopamine, serotonin and ascorbic acid oxidation processes. The sensitivities for dopamine in the presence and absence of 1.0 mM ascorbic acid and serotonin were (2.18 +/- 0.03) x 10(5) microAM(-1) (r = 0.9998); and (2.10 +/- 0.07) x 10(5) miroAM(-1) (r=0.9985), respectively, demonstrating the excellent performance of the GCE/MWCNT-PEI. The detection limit for dopamine in the mixture was 9.2 x 10(-7) M. The R. S. D. for the determination of 50 microM dopamine using four different electrodes was 3.9% when modified with the same MWCNT/PEI dispersion, and 4.6% when using four different dispersions. The modified electrode has been successfully applied for recovery assays of dopamine in human blood serum. Therefore, the new sensor represents an interesting and promising alternative for the electrochemical quantification of neurotransmitters and other analytes of clinical interest.


Asunto(s)
Técnicas Biosensibles/instrumentación , Dopamina/análisis , Electroquímica/instrumentación , Microelectrodos , Nanotecnología/instrumentación , Nanotubos de Carbono/química , Polietileneimina/química , Serotonina/análisis , Ácido Ascórbico/química , Técnicas Biosensibles/métodos , Coloides/química , Cristalización/métodos , Electroquímica/métodos , Diseño de Equipo , Análisis de Falla de Equipo , Vidrio/química , Ensayo de Materiales , Microquímica/instrumentación , Microquímica/métodos , Nanotecnología/métodos , Nanotubos de Carbono/ultraestructura , Tamaño de la Partícula , Sensibilidad y Especificidad
8.
Talanta ; 74(3): 291-307, 2007 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-18371643

RESUMEN

The aim of this review is to summarize the most relevant contributions in the development of electrochemical (bio)sensors based on carbon nanotubes in the last years. Since the first application of carbon nanotubes in the preparation of an electrochemical sensor, an increasing number of publications involving carbon nanotubes-based sensors have been reported, demonstrating that the particular structure of carbon nanotubes and their unique properties make them a very attractive material for the design of electrochemical biosensors. The advantages of carbon nanotubes to promote different electron transfer reactions, in special those related to biomolecules; the different strategies for constructing carbon nanotubes-based electrochemical sensors, their analytical performance and future prospects are discussed in this article.


Asunto(s)
Técnicas Biosensibles/instrumentación , Nanotubos de Carbono/química , Animales , ADN/análisis , ADN/química , Electroquímica , Electrodos , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA