Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Dairy Sci ; 100(10): 8146-8160, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28780091

RESUMEN

The objective of this study was to compare the effects of ground corn or liquid molasses fed as the sole supplemental nonstructural carbohydrate (NSC) source on production performance, milk fatty acid (FA) profile, grazing behavior, and N metabolism in grazing dairy cows. A strip-grazing management system was used, with cows offered a new strip of fresh herbage after each milking, resulting in approximately 16 h of access to pasture daily. Animals were fed a diet formulated to yield an 86:14 forage-to-concentrate ratio consisting [dry matter (DM) basis] of 74% mixed grass-legume herbage, 12% mixed-mostly legume baleage, 12% NSC source, and 2% mineral-vitamin premix. Twenty Jersey cows averaging (mean ± standard deviation) 121 ± 73 d in milk in the beginning of the study were randomly assigned to 1 of 2 herbage supplementation treatments: (1) baleage plus ground corn (B+GC) or (2) baleage + liquid molasses (B+LM). Both NSC sources were fed at a flat rate of 1.6 kg of DM/cow daily. The study lasted from June to September for a total of 15 wk with data and sample collection conducted in wk 3, 7, 12, and 15. Milk samples for FA analysis were collected in wk 2, 4, 6, 8, 9, 11, and 13. Data were analyzed using the MIXED procedure of SAS (SAS Institute Inc., Cary, NC) for a randomized complete block design with repeated measures over time. Treatment × week interactions were observed for supplement DM intake, milk urea N, bite rate, urinary excretion of uric acid, and milk FA (e.g., 17:0, 18:0, cis-9,trans-11 18:2). Supplement DM intake was greatest in cows fed B+LM in wk 7, 12, and 15. Compared with cows fed B+GC, those fed B+LM had lower concentrations of milk urea N in wk 7 and 15. Milk yield, concentrations and yields of milk components, and plasma concentrations of essential AA, except Met, which was lowest with feeding B+LM, were not affected by supplementation. The plasma concentration of urea N was lowest with feeding B+LM. Cows fed B+GC spent more time grazing than those fed B+LM. Feeding B+GC increased cis-9 18:1 FA and most trans-18:1 FA in milk, whereas B+LM increased Σ odd-chain FA, Σ n-3 FA, and the trans-11 18:1 to trans-10 18:1 ratio, and decreased the n-6 to n-3 ratio. Based on current results, B+LM can entirely replace B+GC without negatively affecting milk yield or yields and concentrations of milk fat and true protein, while decreasing milk urea N, plasma urea N, and the milk trans-11 18:1 to trans-10 18:1 ratio, and increasing Σ n-3 FA.


Asunto(s)
Alimentación Animal , Carbohidratos de la Dieta/administración & dosificación , Ácidos Grasos/análisis , Leche/química , Melaza , Zea mays , Animales , Bovinos , Dieta/veterinaria , Carbohidratos de la Dieta/metabolismo , Femenino , Lactancia , Leche/metabolismo , Distribución Aleatoria
2.
J Dairy Sci ; 100(2): 1179-1188, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27939544

RESUMEN

A 4-unit, dual-flow continuous culture fermentor system was used to assess nutrient digestibility, volatile fatty acids (VFA) production, bacterial protein synthesis, and methane (CH4) output of warm-season annual grasses. Treatments were randomly assigned to fermentors in a 4 × 4 Latin square design using 7 d for adaptation to treatment and 3 d for sample collection. Treatments were (1) 100% orchardgrass (Dactylis glomerata L.; ORD); (2) 50% orchardgrass + 50% Japanese millet [Echinochloa esculenta (A. Braun) H. Scholz; MIL]; (3) 50% orchardgrass + 50% brown midrib sorghum × sudangrass (Sorghum bicolor L. Moench × S. bicolor var. sudanense; SSG]; or (4) 50% orchardgrass + 25% millet + 25% sorghum × sudangrass (MIX). Fermentors were fed 60 g of dry matter (DM)/d in equal portions of herbage 4 times daily (0730, 1030, 1400, and 1900 h). To replicate a typical 12-h pasture rotation, fermentors were fed the orchardgrass at 0730 and 1030 h and the individual treatment herbage (orchardgrass, Japanese millet, sorghum × sudangrass, or 50:50 Japanese millet and sorghum × sudangrass) at 1400 and 1900 h. Gas samples for CH4 analysis were collected 6 times daily at 0725, 0900, 1000, 1355, 1530, and 1630 h. Fermentor pH was determined at the time of feeding, and fermentor effluent samples for NH3-N and VFA analyses were taken daily at 1030 h on d 8, 9, and 10. Samples were also analyzed for DM, organic matter (OM), crude protein, and fiber fractions to determine nutrient digestibilities. Bacterial efficiency was estimated by dividing bacterial N by truly digested OM. True DM and OM digestibilities and pH were not different among treatments. Apparent OM digestibility was greater in ORD than in MIL and SSG. The concentration of propionate was greater in ORD than in SSG and MIX, and that of butyrate was greatest in ORD and MIL. Methane output was greatest in MIL, intermediate in ORD, and lowest in SSG and MIX. Nitrogen intake did not differ across treatments, whereas bacterial N efficiency per kilogram of truly digestible OM was greatest in MIL, intermediate in SSG and MIX, and lowest in ORD. True crude protein digestibility was greater in ORD versus MIL, and ORD had lower total N, non-NH3-N, bacterial N, and dietary N in effluent flows than MIL. Overall, we detected little difference in true nutrient digestibility; however, SSG and MIX provided the lowest acetate to propionate ratio and lower CH4 output than MIL and ORD. Thus, improved warm-season annual pastures (i.e., brown midrib sorghum × sudangrass) could provide a reasonable alternative to orchardgrass pastures during the summer months when such perennial cool-season grass species have greatly reduced productivity.


Asunto(s)
Dactylis , Fermentación , Animales , Dieta , Suplementos Dietéticos , Digestión , Metano/metabolismo , Nitrógeno/metabolismo , Rumen/metabolismo , Estaciones del Año
3.
J Dairy Sci ; 99(6): 4464-4475, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27060824

RESUMEN

A 4-unit dual-flow continuous culture fermentor system was used to assess the effects of supplementing orchardgrass (Dactylis glomerata L.) with 2 levels [5 and 10% of total dry matter (DM) fed] of starchy (barley grain, BAR) or fibrous (beet pulp, BP) carbohydrate sources on nutrient digestibility, volatile fatty acid (VFA) production, bacterial protein synthesis, and CH4 output. Treatments were randomly assigned to fermentors in a 4×4 Latin square design with a 2×2 factorial arrangement using 7 d for microbial adaptation and 3 d for sample collection. Treatments included (1) 57g of DM orchardgrass + 3g of DM BAR, (2) 54g of DM orchardgrass + 6g of DM BAR, (3) 57g of DM orchardgrass + 3g of DM BP, or (4) 54g of DM orchardgrass + 6g of DM BP. Feedings occurred at 0900, 1030, 1400, and 1900h throughout four 10-d periods. Gas samples for CH4 analysis were collected 6 times daily at 0725, 0900, 1000, 1355, 1530, and 1630h. Fermentor samples for pH, NH3-N, and VFA analysis were taken on d 8, 9, and 10. Samples were also analyzed for DM, organic matter, crude protein, purines, neutral detergent fiber, and acid detergent fiber to determine nutrient digestibilities and estimation of bacterial protein synthesis. Apparent and true DM and organic matter digestibilities were not affected by supplement source. Apparent neutral and acid detergent fiber digestibilities were greater for BAR than BP. Conversely, apparent crude protein digestibility was greater for BP than BAR. Mean and maximum pH tended to be greatest for BAR than BP. Minimum pH was greater at the lower level (5% of diet DM) of supplementation. Barley produced greater concentrations of total VFA and acetate, whereas BP had greater daily outputs of CH4. Significant supplement type × level interactions were found for bacterial N flow and efficiency. Overall, supplementing orchardgrass with BP improved crude protein digestibility, reduced fiber digestibility and total VFA concentration, but increased CH4 output compared with BAR.


Asunto(s)
Bovinos/metabolismo , Carbohidratos de la Dieta/administración & dosificación , Fibras de la Dieta/administración & dosificación , Metano/metabolismo , Alimentación Animal/análisis , Fenómenos Fisiológicos Nutricionales de los Animales , Animales , Reactores Biológicos/veterinaria , Dactylis/química , Dieta/veterinaria , Suplementos Dietéticos/análisis , Digestión , Femenino , Fermentación , Distribución Aleatoria , Rumen/metabolismo , Almidón/administración & dosificación
4.
J Dairy Sci ; 97(12): 7856-69, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25262180

RESUMEN

A 4-unit dual-flow continuous-culture fermentor system was used to assess the effect of supplementing 7-d sprouted barley (SB) or barley grain (BG) with an herbage-based or haylage-based diet on nutrient digestibility, volatile fatty acid (VFA) profiles, bacterial protein synthesis, and methane (CH4) output. Treatments were randomly assigned to fermentors in a 4 × 4 Latin square design with a 2 × 2 factorial arrangement using 7 d for diet adaptation and 3 d for sample collection. Experimental diets were (1) 55.5 g of herbage dry matter (DM) + 4.5 g of SB DM, (2) 56.0 g of herbage DM + 4.0 g of BG DM, (3) 55.5 g of haylage DM + 4.5 g of SB DM, and (4) 56.0 g of haylage DM + 4.0 g of BG DM. Forages were fed at 0730, 1030, 1400, and 1900 h, whereas SB and BG were fed at 0730 and 1400 h. Gas samples for CH4 analysis were collected at 0725, 0900, 1000, 1355, 1530, and 1630 h on d 8, 9, and 10. Fluid samples were taken once daily on d 8, 9, and 10 for pH measurements and for ammonia-N and VFA analysis and analyzed for DM, organic matter, crude protein, neutral detergent fiber, and acid detergent fiber for determination of nutrient digestibilities and estimation of bacterial protein synthesis. Orthogonal contrasts were used to compare the effect of forage source (haylage vs. herbage), supplement (BG vs. SB), and the forage × supplement interaction. Apparent and true DM and organic matter digestibilities as well as apparent crude protein digestibility were not affected by forage source. However, true DM digestibility was greatest for diets supplemented with SB. Apparent neutral and acid detergent fiber digestibilities of herbage-based diets were higher than haylage-based diets but fiber digestibility was not affected by supplement. Diets supplemented with SB had higher mean and minimum pH than BG; however, maximum pH was not affected by diet. Supplementation with BG produced a greater concentration of total VFA compared with diets supplemented with SB. Haylage-based diets produced greater CH4 output compared with herbage-based diets but supplementation did not affect CH4 output. Efficiency of bacterial protein synthesis was greater for herbage-based diets compared with haylage-based diets, with no effect of supplementation. Overall, supplementation with SB marginally increased true DM digestibility of herbage- and haylage-based diets but did not affect fiber and crude protein digestibilities, CH4 output, and bacterial efficiency, compared with BG.


Asunto(s)
Bovinos/fisiología , Suplementos Dietéticos , Ácidos Grasos Volátiles/metabolismo , Metano/metabolismo , Nitrógeno/metabolismo , Amoníaco/metabolismo , Alimentación Animal/análisis , Animales , Reactores Biológicos/veterinaria , Dieta/veterinaria , Fibras de la Dieta/metabolismo , Digestión , Grano Comestible , Femenino , Fermentación , Hordeum , Poaceae , Distribución Aleatoria , Rumen/metabolismo , Plantones , Ensilaje/análisis
5.
J Dairy Sci ; 96(5): 3228-37, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23522677

RESUMEN

A 4-unit dual-flow continuous culture fermentor system was used to evaluate the effects of supplementing fresh herbage with a total mixed ration (TMR) or flaxseed on nutrient digestibility, fermentation profile, and bacterial N synthesis. Diets were randomly assigned to fermentors in a 4 × 4 Latin square design. Each fermentor was fed a total of 70 g of dry matter/d of 1 of 4 diets: (1) 100% freeze-dried orchardgrass herbage (Dactylis glomerata L.; HERB), (2) 100% freeze-dried TMR (100TMR), (3) 50% orchardgrass herbage supplemented with 50% TMR (50TMR), or (4) 90% orchardgrass herbage supplemented with 10% ground flaxseed (Linum usitatissimum L.; FLAX). Preplanned, single degree of freedom orthogonal contrasts were constructed to assess the effects of feeding system (HERB vs. 100TMR), herbage supplementation (HERB vs. 50TMR + FLAX), and herbage supplemental source (50TMR vs. FLAX). Compared with the HERB diet, the 100TMR diet significantly reduced apparent digestibility of neutral detergent fiber. Herbage supplementation with 50TMR or FLAX significantly reduced or tended to reduce apparent digestibilities of dry matter, organic matter, and neutral detergent fiber, suggesting that replacing high-quality, highly digestible fresh herbage with forage TMR likely caused depressions in nutrient digestibilities. Concentration of total volatile fatty acids, molar proportions of acetate, propionate, and isovalerate, as well as the acetate:propionate ratios were all significantly higher in fermentors fed 100TMR compared with HERB, likely in response to enhanced supply of fermentable energy. In general, feeding system, herbage supplementation, and type of supplementation did not affect N metabolism in the present study. The few significant changes in N metabolism (e.g., flows of total N and non-NH3-N) were primarily linked to increased fermentor N supply with feeding herbage-based diets (HERB and FLAX). Although TMR-based diets decreased nutrient digestibility slightly, TMR offered advantages in bacterial fermentation in relation to volatile fatty acid production, which could potentially translate into better animal performance. Flaxseed shows promise as an alternative supplement for herbage-based diets; however, further in vivo evaluation is needed to determine the optimal level to optimize animal production while reducing feed costs.


Asunto(s)
Proteínas Bacterianas/biosíntesis , Dactylis , Lino , Poaceae , Animales , Bovinos , Dieta/veterinaria , Suplementos Dietéticos , Digestión , Femenino , Fermentación/efectos de los fármacos , Fermentación/fisiología , Técnicas In Vitro
6.
J Dairy Sci ; 96(4): 2551-2556, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23403191

RESUMEN

A 4-unit continuous culture fermentor system was used to evaluate the effects of oilseed supplementation of an herbage-based diet on nutrient digestibility, fermentation profile, and bacterial nitrogen (N) synthesis. Treatments were randomly assigned to fermentors in a 4×4 Latin square design with 7d for diet adaptation and 3d for data and sample collection. Dietary treatments were an herbage-only diet (HERB), or the following ground oilseeds supplemented to an herbage-based diet at 10% of total dry matter (DM) fed: flaxseed (FLAX), canola (CAN), or sunflower (SUN). Apparent DM, organic matter, and neutral detergent fiber digestibility were not affected by diet, averaging 62, 68, and 78%, respectively. True DM and organic matter digestibility were not affected by diet, averaging 78 and 82%, respectively. Fermentor pH and total volatile fatty acids were not affected by diet. Branched-chain volatile fatty acids tended to be lower for HERB compared with the 3 oilseed diets. Ammonia N concentrations were lowest for the HERB diet. Crude protein digestibility was not affected by diet. Flow of NH3-N was lowest for the HERB diet reflecting the lowest culture concentration of NH3-N. Bacterial N flows were lowest for HERB and SUN diets, intermediate for FLAX, and greatest for CAN. Flows of total N, non-NH3-N, and dietary N were not affected by diet. Likewise, efficiency of bacterial N synthesis was not affected by diet. Supplementation with FLAX, CAN, or SUN at 10% of total DM fed did not affect nutrient digestibility or ruminal fermentation compared with an all-herbage diet. The oilseeds tested herein may be considered as alternative energy supplements for grazing dairy cows, particularly during times of low availability of corn. However, in vivo studies are needed to further evaluate the effects of oilseeds supplementation of an herbage-based diet on milk production and composition (specifically human-beneficial fatty acids).


Asunto(s)
Dieta/veterinaria , Fermentación , Aceites de Plantas/administración & dosificación , Rumen/metabolismo , Amoníaco/análisis , Animales , Bacterias/metabolismo , Bovinos , Fibras de la Dieta/metabolismo , Suplementos Dietéticos , Digestión , Ácidos Grasos Monoinsaturados/administración & dosificación , Ácidos Grasos Volátiles/análisis , Femenino , Aceite de Linaza/administración & dosificación , Nitrógeno/análisis , Nitrógeno/metabolismo , Aceite de Brassica napus , Rumen/microbiología , Aceite de Girasol
7.
J Dairy Sci ; 95(7): 3961-9, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22720950

RESUMEN

A 4-unit dual-flow continuous culture fermentor system was used to assess the effect of increasing flaxseed (Linum usitatissimum) supplementation of an herbage-based diet on nutrient digestibility, microbial N synthesis, and methane (CH(4)) output. Treatments were randomly assigned to fermentors in a 4 × 4 Latin square design, with 7d for diet adaptation and 3d for data and sample collection. Treatments were 0, 5, 10, and 15% ground flaxseed supplementation of an orchardgrass (Dactylis glomerata L.) diet [70 g of total dry matter (DM) fed daily]. Samples were collected from the fermentors 4 times daily at feeding (0730, 1030, 1400, and 1900 h) on d 8 to 10 of each of four 10-d periods and analyzed for pH, ammonia-N, and volatile fatty acids. Gas samples for CH(4) analysis were collected immediately before and 1 and 2h after the 0730 h feeding on d 8, 9, and 10 and at the 1400 h feeding on d 7, 8, and 9 of each period. Effluents were analyzed for DM, organic matter, crude protein, and neutral detergent fiber for determination of nutrient digestibilities, and for total purine concentration for estimation of microbial protein synthesis. Apparent DM, organic matter, and neutral detergent fiber digestibilities decreased linearly with increasing supplemental flaxseed, whereas true DM and organic matter digestibilities were not significantly affected by treatment, averaging 77.6 and 79.1%, respectively. Mean ruminal pH and concentration of total volatile fatty acids were not significantly affected by increasing the dietary concentration of flaxseed, averaging 6.68 and 55.9 mmol/L across treatments, respectively. However, molar proportions of acetate and propionate increased linearly, whereas those of butyrate and valerate decreased linearly with increasing flaxseed supplementation. Although CH(4) output decreased linearly as supplemental flaxseed increased from 0 to 15% of diet DM, ammonia-N concentration, apparent crude protein digestibility, and microbial N synthesis did not differ across treatments. Incremental ground flaxseed supplementation of an herbage-based diet resulted in a corresponding decrease in CH(4) output in a dual-flow continuous culture fermentor system. However, apparent nutrient digestibility also decreased with flaxseed supplementation, which, at the cow level, could result in decreased DM intake, milk production, or both.


Asunto(s)
Fermentación/fisiología , Lino/metabolismo , Metano/biosíntesis , Rumen/metabolismo , Alimentación Animal , Fenómenos Fisiológicos Nutricionales de los Animales/fisiología , Animales , Bovinos , Dieta/veterinaria , Suplementos Dietéticos , Femenino , Concentración de Iones de Hidrógeno , Técnicas de Cultivo de Órganos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA