Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 15(47): 54249-54265, 2023 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-37975260

RESUMEN

A facile novel approach of introducing dopamine and [2-(methacryloyloxy) ethyl] dimethyl-(3-sulfopropyl) ammonium hydroxide via dopamine-triggered in situ synthesis into gelatin hydrogels in the presence of ZnSO4 is presented in this study. Remarkably, the resulting hydrogels showed 99.99 and 100% antibacterial efficiency against Gram-positive and Gram-negative bacteria, respectively, making them the highest performing surfaces in their class. Furthermore, the hydrogels showed adhesive properties, self-healing ability, antifreeze properties, electrical conductivity, fatigue resistance, and mechanical stability from -100 to 80 °C. The added multifunctional performance overcomes several disadvantages of gelatin-based hydrogels such as poor mechanical properties and limited thermostability. Overall, the newly developed hydrogels show significant potential for numerous biomedical applications, such as wearable monitoring sensors and antibacterial coatings.


Asunto(s)
Gelatina , Hidrogeles , Hidrogeles/farmacología , Dopamina , Antibacterianos/farmacología , Biomimética , Bacterias Gramnegativas , Bacterias Grampositivas , Conductividad Eléctrica
2.
Acta Biomater ; 168: 42-77, 2023 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-37481193

RESUMEN

To tackle antimicrobial resistance, a global threat identified by the United Nations, is a common cause of healthcare-associated infections (HAI) and is responsible for significant costs on healthcare systems, a substantial amount of research has been devoted to developing polysaccharide-based strategies that prevent bacterial attachment and biofilm formation on surfaces. Polysaccharides are essential building blocks for life and an abundant renewable resource that have attracted much attention due to their intrinsic remarkable biological potential antibacterial activities. If converted into efficient antibacterial coatings that could be applied to a broad range of surfaces and applications, polysaccharide-based coatings could have a significant potential global impact. However, the ultimate success of polysaccharide-based antibacterial materials will be determined by their potential for use in manufacturing processes that are scalable, versatile, and affordable. Therefore, in this review we focus on recent advances in polysaccharide-based antibacterial coatings from the perspective of fabrication methods. We first provide an overview of strategies for designing polysaccharide-based antimicrobial formulations and methods to assess the antibacterial properties of coatings. Recent advances on manufacturing polysaccharide-based coatings using some of the most common polysaccharides and fabrication methods are then detailed, followed by a critical comparative overview of associated challenges and opportunities for future developments. STATEMENT OF SIGNIFICANCE: Our review presents a timely perspective by being the first review in the field to focus on advances on polysaccharide-based antibacterial coatings from the perspective of fabrication methods along with an overview of strategies for designing polysaccharide-based antimicrobial formulations, methods to assess the antibacterial properties of coatings as well as a critical comparative overview of associated challenges and opportunities for future developments. Meanwhile this work is specifically targeted at an audience focused on featuring critical information and guidelines for developing polysaccharide-based coatings. Including such a complementary work in the journal could lead to further developments on polysaccharide antibacterial applications.


Asunto(s)
Antibacterianos , Antiinfecciosos , Antibacterianos/farmacología , Polisacáridos/farmacología , Materiales Biocompatibles Revestidos/farmacología
3.
Soft Matter ; 15(37): 7381-7389, 2019 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-31513229

RESUMEN

Two block copolymers containing two amino-acid derivatives, PEO-b-PLAA and PEO-b-PAAC, were fabricated through atom transfer radical polymerization (ATRP) or reversible addition-fragmentation chain transfer polymerization (RAFT). Then, they were employed as a macro-crosslinker to prepare high-performance poly(acrylic acid) (PAA) hydrogels named "PxAy" or "TyAz". There were numerous synergistic noncovalent interactions with hydrogen bonds between the macro-crosslinker and PAA chains, as well as entanglement of polymer chains. Hence, the hydrogels exhibited desirable mechanical properties and self-healing abilities. For PxAy hydrogels, the maximum fracture elongation and fracture strength were 9800% and 120.01 kPa, respectively. Moreover, the enhanced physical interaction enabled the hydrogels to have rapid self-healing abilities without stimulation. The hydrogels showed >80% self-healing efficiency and exhibited ∼10-3 S cm-1 electrical conductivity upon the introduction of KCl. Meanwhile, benefitting from doubling the number of carboxyl groups in the macro-crosslinker of the TyAz hydrogels compared with the PxAy hydrogels, the mechanical properties of TyAz hydrogels could be promoted further and notch-insensitivity could be observed. Tough, adhesive, self-healable, and conductive PAA hydrogels with different structures of amino-acid derivatives could aid the development of macro-crosslinkers.


Asunto(s)
Resinas Acrílicas/química , Ácido Aspártico/análogos & derivados , Hidrogeles/síntesis química , Leucina/análogos & derivados , Polietilenglicoles/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA