Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros











Intervalo de año de publicación
1.
Phys Rev Lett ; 113(8): 086404, 2014 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-25192113

RESUMEN

The nature of the Mott transition in the absence of any symmetry breaking remains a matter of debate. We study the correlation-driven insulator-to-metal transition in the prototypical 3D Mott system GaTa(4)Se(8), as a function of temperature and applied pressure. We report novel experiments on single crystals, which demonstrate that the transition is of first order and follows from the coexistence of two states, one insulating and one metallic, that we toggle with a small bias current. We provide support for our findings by contrasting the experimental data with calculations that combine local density approximation with dynamical mean-field theory, which are in very good agreement.

2.
J Phys Condens Matter ; 21(4): 045702, 2009 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-21715820

RESUMEN

We report on the reversible, non-volatile and polarity-dependent resistive switching between superconductor and insulator states at the interfaces of an Au/YBa(2)Cu(3)O(7-δ) (YBCO)/Au system. We show that, upon application of electric pulses, the superconducting state of YBCO in regions near the electrodes can be reversibly removed and restored. In addition, four-wire measurements reveal that pulsing also induces significant non-volatile changes in the bulk resistance. We argue that our observations are compatible with a scenario where the switching effect is due to migration of oxygen ions along grain boundaries that control the inter-grain superconducting coupling.

3.
Phys Rev Lett ; 98(11): 116601, 2007 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-17501071

RESUMEN

We investigate the electric-pulse-induced resistance switching in manganite systems. We find a "complementarity" effect where the contact resistance of electrodes at opposite ends show variations of opposite sign and is reversible. The temperature dependence of the magnitude of the effect reveals a dramatic enhancement at a temperature T*, below the metal-insulator transition. We qualitatively capture these features with a theoretical model, providing evidence for the physical mechanism of the resistance switching. We argue that doping control of the electronic state of the oxide at the interfaces is the mechanism driving the effect.

4.
Phys Rev Lett ; 86(22): 5172-5, 2001 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-11384449

RESUMEN

We study the behavior of two archetypal quantum spin glasses at T = 0 by exact diagonalization techniques: the random Ising model in a transverse field and the random Heisenberg model. The behavior of the dynamical spin response is obtained in the spin-glass ordered phase. In both models it is gapless and has the general form chi(")(omega) = qdelta(omega)+chi(")(reg)(omega), with chi(")(reg)(omega) approximately omega for the Ising and chi(")(reg)(omega) approximately const for the Heisenberg, at low frequencies. The method provides new insight to the physical nature of the low-lying excitations.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA